795 research outputs found

    Human-human haptic collaboration in cyclical Fitts' tasks

    Get PDF
    Understanding how humans assist each other in haptic interaction teams could lead to improved robotic aids to solo human dextrous manipulation. Inspired by experiments reported in Reed et al. (2004), which suggested two-person haptically interacting teams could achieve a lower movement time (MT) than individuals for discrete aiming movements of specified accuracy, we report that two-person teams (dyads) can also achieve lower MT for cyclical, continuous aiming movements. We propose a model, called endpoint compromise, for how the intended endpoints of both subjects' motion combine during haptic interaction; it predicts a ratio of /spl radic/2 between slopes of MT fits for individuals and dyads. This slope ratio prediction is supported by our data

    Polynomial Lyapunov Functions and Invariant Sets from a New Hierarchy of Quadratic Lyapunov Functions for LTV Systems

    Full text link
    We introduce a new class of quadratic functions based on a hierarchy of linear time-varying (LTV) dynamical systems. These quadratic functions in the higher order space can be also seen as a non-homogeneous polynomial Lyapunov functions for the original system, i.e the first system in the hierarchy. These non-homogeneous polynomials are used to obtain accurate outer approximation for the reachable set given the initial condition and less conservative bounds for the impulse response peak of linear, possibly time-varying systems. In addition, we pose an extension to the presented approach to construct invariant sets that are not necessarily Lyapunov functions. The introduced methods are based on elementary linear systems theory and offer very much flexibility in defining arbitrary polynomial Lyapunov functions and invariant sets for LTV systems

    Control System Analysis and Synthesis via Linear Matrix Inequalities

    Get PDF
    A wide variety of problems in systems and control theory can be cast or recast as convex problems that involve linear matrix inequalities (LMIs). For a few very special cases there are "analytical solutions" to these problems, but in general they can be solved numerically very efficiently. In many cases the inequalities have the form of simultaneous Lyapunov or algebraic Riccati inequalities; such problems can be solved in a time that is comparable to the time required to solve the same number of Lyapunov or Algebraic Riccati equations. Therefore the computational cost of extending current control theory that is based on the solution of algebraic Riccati equations to a theory based on the solution of (multiple, simultaneous) Lyapunov or Riccati inequalities is modest. Examples include: multicriterion LQG, synthesis of linear state feedback for multiple or nonlinear plants ("multi-model control"), optimal transfer matrix realization, norm scaling, synthesis of multipliers for Popov-like analysis of systems with unknown gains, and many others. Full details can be found in the references cited

    Mathematic Models for Aircraft Trajectory Design: A Survey

    Get PDF
    Presented at the 2013 ENRI International Workshop on ATM/CNS (EIWAC2013), Tokyo, Japan, February 2013.Air traffic management ensure the safety of flight by optimizing flows and maintaining separation between aircraft. After giving some definitions, some typical feature of aircraft trajectories are presented. Trajectories are objects belonging to spaces with infinite dimensions. The naive way to address such problem is to sample trajectories at some regular points and to create a big vector of positions (and or speeds). In order to manipulate such objects with algorithms, one must reduce the dimension of the search space by using more efficient representations. Some dimension reduction tricks are then presented for which advantages and drawbacks are presented. Then, front propagation approaches are introduced with a focus on Fast Marching Algorithms and Ordered upwind algorithms. An example of application of such algorithm to a real instance of air traffic control problem is also given. When aircraft dynamics have to be included in the model, optimal control approaches are really efficient. We present also some application to aircraft trajectory design. Finally, we introduce some path planning techniques via natural language processing and mathematical programming

    Modeling the Images of Relativistic Jets Lensed by Galaxies with Different Mass Surface Density Distributions

    Full text link
    The images of relativistic jets from extragalactic sources produced by gravitational lensing by galaxies with different mass surface density distributions are modeled. In particular, the following models of the gravitational lens mass distribution are considered: a singular isothermal ellipsoid, an isothermal ellipsoid with a core, two- and three-component models with a galactic disk, halo, and bulge. The modeled images are compared both between themselves and with available observations. Different sets of parameters are shown to exist for the gravitationally lensed system B0218+357 in multicomponent models. These sets allow the observed geometry of the system and the intensity ratio of the compact core images to be obtained, but they lead to a significant variety in the Hubble constant determined from the modeling results.Comment: 26 pages, 9 figures, will be published in the Astronomy Letters, 2011, v.37, N4, pp. 233-24
    • 

    corecore