2 research outputs found

    80Se(n,?) cross-section measurement at CERN n TOF

    Get PDF
    Radiative neutron capture cross section measurements are of fundamental importance for the study of the slow neutron capture (s-) process of nucleosynthesis. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. Particularly relevant are branching nuclei along the s-process path, which are sensitive to the physical conditions of the stellar environment. One such example is the branching at 79^{79}Se (3.27 × 105^{5} y), which shows a thermally dependent β-decay rate. However, an astrophysically consistent interpretation requires also the knowledge of the closest neighbour isotopes involved. In particular, the 80^{80}Se(n,γ) cross section directly affects the stellar yield of the "cold" branch leading to the formation of the s-only 82^{82}Kr. Experimentally, there exists only one previous measurement on 80^{80}Se using the time of flight (TOF) technique. However, the latter suffers from some limitations that are described in this presentation. These drawbacks have been significantly improved in a recent measurement at CERN n TOF. This contribution presents a summary of the latter measurement and the status of the data analysis

    Neutron capture measurement at the n TOF facility of the 204Tl and 205Tl s-process branching points

    Get PDF
    Neutron capture cross sections are one of the fundamental nuclear data in the study of the s (slow) process of nucleosynthesis. More interestingly, the competition between the capture and the decay rates in some unstable nuclei determines the local isotopic abundance pattern. Since decay rates are often sensible to temperature and electron density, the study of the nuclear properties of these nuclei can provide valuable constraints to the physical magnitudes of the nucleosynthesis stellar environment. Here we report on the capture cross section measurement of two thallium isotopes, 204^{204}Tl and 205^{205}Tl performed by the time-of-flight technique at the n TOF facility at CERN. At some particular stellar s-process environments, the decay of both nuclei is strongly enhanced, and determines decisively the abundance of two s-only isotopes of lead, 204^{204}Pb and 205^{205}Pb. The latter, as a long-lived radioactive nucleus, has potential use as a chronometer of the last s-process events that contributed to final solar isotopic abundances
    corecore