6 research outputs found

    STEEL CORROSION AT 600°C IN SINGLE AND DUAL CONDITION IN OXYFUEL ATMOSPHERE

    No full text
    Coal-fired power plants using the Oxyfuel process are being developed to produce electricity with zero CO2 emission. Steels used in this and other processes are often exposed to different atmospheres in each side of the material, especially in heat exchangers and solid oxide fuel cells. Some studies have shown that steels exposed to different hydrogen partial pressures in each side have a different corrosion behavior from steels exposed to a single atmosphere condition. In this investigation, two experimental steels were studied at 600°C and 1 atm in dual atmospheres containing water vapor in one side and flue gas in the other and they were compared to steels oxidized in single atmospheres. The gas composition used is similar to the ones found in Oxyfuel coal power plants, where there is a great concentration of CO2, and also H2O and SO2. Analyses were made using SEM and TEM

    Microstructural Characterization of a 1200 MPa Complex-Phase Steel

    No full text
    The demand for new advanced high strength steels (AHSS) has been increasing in the last few decades. A large part of this demand comes from automotive companies. We have produced a new complex-phase (CP) steel with 1200 MPa of mechanical resistance and 8% of elongation, called CP1200. In this paper the dilatometric and microstructural characterization of a newly produced CP1200 steel is presented. The new steel was produced by making changes to the heat treatment of the already industrially available CP1100. The microstructure was quantified using light optical microscopy (LOM) and electron backscatter diffraction (EBSD). The microstructure of both steels was compared to identify the origin of the mechanical properties improvement. A new microstructure distribution, with higher amount of bainite and smaller concentration of ferrite and martensite was identified.</p

    In Situ observation of phase transformations in the Fe-Zn system

    No full text
    In this study, the MAXIM technique was used in an attempt to clarify the phase transformation sequence that occurs during in situ annealing of galvanized samples. A diffractometer equipped with a novel imaging system comprising a Micro-Channel Plate in front of a CCD camera was used. The galvanized samples were produced under typical industrial conditions, with effective aluminum content at 0.147wt.%. In situ experiments were performed and the phase evolution was recorded in real time. It can be concluded that, coupled to in situ thermal treatment, MAXIM is an efficient method to observe the evolution of the phases present in galvannealed samples. This technique has enough sensitivity to detect the evolution of the involved phases with good spatial resolution

    Development of Bulk Bi2+xSr3-yCa yCu 2O8+delta Superconductors by Partial-Melting Route for Fault Current Limiters Application

    No full text
    The production of bulk Bi2+xSr3-yCa yCu 2O8+delta (Bi-2212) superconductors for fault current limiter application was developed via a partial-melting route. Aiming high Ic (critical current), which is the essential superconducting characteristic for application of this material in the construction of Fault Current Limiters (FCL), the produced blocks have predominance of Bi-2212 phase (83 wt%), which characterizes with high values of zero and onset transport critical temperature of 92K and 97.5K, respectively. A relatively low transition width, deltaT, from the superconducting to the normal state of 5.5K, revealed a good intergrain connectivity. Consequently, current measurements on the blocks of Bi-2212 show promising Ic values of 230A and 850A for direct and alternate current, respectively. It is expected that further increases in the Ic values will depend on the elimination of an observed amorphous phase and further reduction of amount and grain sizes of secondary phases, still present in the blocks obtained by the proposed partial-melting route. This may be achieved by a further optimization of the partial-melting processing parameters
    corecore