38 research outputs found

    Modulation of Mouse Coagulation Gene Transcription following Acute In Vivo Delivery of Synthetic Small Interfering RNAs Targeting HNF4α and C/EBPα

    Get PDF
    Hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer-binding protein α (C/EBPα) are important for the transcriptional control of coagulation factors. To determine in vivo the direct role of HNF4α and C/EBPα in control of genes encoding coagulation factors, a synthetic small interfering (si)RNA approach was used that enabled strong reduction of mouse hepatic HNF4α and C/EBPα under conditions that minimized target-related secondary effects. For both HNF4α and C/EBPα, intravenous injection of specific synthetic siRNAs (siHNF4α and siC/EBPα) resulted in more than 75% reduction in their liver transcript and protein levels 2 days post-injection. For siHNF4α, this coincided with marked and significantly reduced transcript levels of the coagulation genes Hrg, Proz, Serpina5, F11, F12, F13b, Serpinf2, F5, and F9 (in order of magnitude of effect) as compared to levels in control siRNA injected animals. Significant decreases in HNF4α target gene mRNA levels were also observed at 5 days post-siRNA injection, despite a limited level of HNF4α knockdown at this time point. Compared to HNF4α, C/EBPα knockdown had a modest impact on genes encoding coagulation factors. A strong reduction in C/EBPα transcript and protein levels resulted in significantly affected transcript levels of the control genes Pck1 and Fasn and a modest downregulation for coagulation genes Fba, Fbg and F5. F5 and F11 were the sole coagulation genes that were significantly affected upon prolonged (5 day) C/EBPα knockdown. We conclude that in the mouse, HNF4α has a direct and essential regulatory role for multiple hepatic coagulation genes, while a role for C/EBPα is more restricted. In addition, this study demonstrates that synthetic siRNA provides a simple and fast means for determining liver transcription factor involvement in vivo

    Effects of Neonatal Neural Progenitor Cell Implantation on Adult Neuroanatomy and Cognition in the Ts65Dn Model of Down Syndrome

    Get PDF
    As much of the aberrant neural development in Down syndrome (DS) occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC) in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line) or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2) Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model

    Cloning and sequencing alleles of the KIR2DL4 gene from genomic DNA samples.

    No full text
    Killer-cell immunoglobulin-like receptor (KIR) genes are highly polymorphic and polymorphisms have been found in all KIR exons. Although less is known of the introns, these also appear to be polymorphic. To generate a comprehensive database of KIR genomic sequences, which will aid in the design of KIR typing reagents, we have established a method for cloning and sequencing of KIR genes from genomic DNA. We cloned and sequenced the entire KIR2DL4 gene from genomic DNA using long template touchdown PCR and high capacity cloning vectors. Overlapping secondary amplicons were modified to include a nucleotide analogue that reduced sequencing problems associated with secondary structure formation in the KIR sequence. Using a modified sequencing chemistry we were able to sequence approximately 11,000 bases confirming the previously published KIR2DL4*005 allele sequence
    corecore