61 research outputs found

    Physical parameters of the O6.5V+B1V eclipsing binary system LS 1135

    Get PDF
    ASAS photometric observations of LS 1135, an O-type SB1 binary system with an orbital period of 2.7 days, show that the system is also eclipsing. This prompted us to re-examine the spectra used in the previously published spectroscopic orbit. Our new analysis of the spectra obtained near quadratures, reveal the presence of faint lines of the secondary component. We present for the first time a double-lined radial velocity orbit and values of physical parameters of this binary system. These values were obtained by analyzing ASAS photometry jointly with the radial velocities of both components performing a numerical model of this binary based on the Wilson-Devinney method. We obtained an orbital inclination i ~ 68.5 deg. With this value of the inclination we deduced masses M1 ~ 30 +/- 1 Mo and M2 ~ 9 +/- 1 Mo; and radii R1 ~ 12 +/- 1 Ro and R2 ~ 5 +/- 1 Ro for primary and secondary components, respectively. Both components are well inside their respective Roche lobes. Fixing the Teff of the primary to the value corresponding to its spectral type (O6.5V), the Teff obtained for the secondary component corresponds approximately to a spectral type of B1V. The mass ratio M2/M1 ~ 0.3 is among the lowest known values for spectroscopic binaries with O-type components.Comment: 5 pages, 4 figures, 3 tables. Accepted for publication in MNRAS. The definitive version will be available at www.blackwell-synergy.co

    Why a Single-Star Model Cannot Explain the Bipolar Nebula of Eta Carinae

    Full text link
    I examine the angular momentum evolution during the 1837-1856 Great Eruption of the massive star Eta Carinae. I find that the new estimate of the mass blown during that eruption implies that the envelope of Eta Car substantially spun-down during the 20 years eruption. Single-star models, most of which require the envelope to rotate close to the break-up velocity, cannot account for the bipolar nebula (the Homunculus) formed from matter expelled in that eruption. The kinetic energy and momentum of the Homunculus further constrains single-star models. I discuss how Eta Car can fit into a unified model for the formation of bipolar lobes where two oppositely ejected jets inflate two lobes (or bubbles). These jets are blown by an accretion disk, which requires stellar companions in the case of bipolar nebulae around stellar objects.Comment: ApJ, in press. New references and segments were adde

    Optical Spectroscopy of X-Mega targets in the Carina Nebula - VI. FO 15: a new O-Type double-lined eclipsing binary

    Full text link
    We report the discovery of a new O-type double-lined spectroscopic binary with a short orbital period of 1.4 days. We find the primary component of this binary, FO 15, to have an approximate spectral type O5.5Vz, i.e. a Zero-Age-Main-Sequence star. The secondary appears to be of spectral type O9.5V. We have performed a numerical model fit to the public ASAS photometry, which shows that FO 15 is also an eclipsing binary. We find an orbital inclination of ~ 80 deg. From a simultaneous light-curve and radial velocity solution we find the masses and radii of the two components to be 30 +/- 1 and 16 +/- 1 solar masses and 7.5 +/- 0.5 and 5.3 +/- 0.5 solar radii. These radii, and hence also the luminosities, are smaller than those of normal O-type stars, but similar to recently born ZAMS O-type stars. The absolute magnitudes derived from our analysis locate FO 15 at the same distance as Eta Carinae. From Chandra and XMM X-ray images we also find that there are two close X-ray sources, one coincident with FO 15 and another one without optical counterpart. This latter seems to be a highly variable source, presumably due to a pre-main-sequence stellar neighbour of FO 15.Comment: 11 pages, 9 figures, 3 tables. Accepted for publication in MNRAS. Higher resolution version available at http://lilen.fcaglp.unlp.edu.ar/papers2006.htm

    Accretion onto the Companion of Eta Carinae During the Spectroscopic Event: II. X-Ray Emission Cycle

    Full text link
    We calculate the X-ray luminosity and light curve for the stellar binary system Eta Carinae for the entire orbital period of 5.54 years. By using a new approach we find, as suggested before, that the collision of the winds blown by the two stars can explain the X-ray emission and temporal behavior. Most X-ray emission in the 2-10 \kev band results from the shocked secondary stellar wind. The observed rise in X-ray luminosity just before minimum is due to increase in density and subsequent decrease in radiative cooling time of the shocked fast secondary wind. Absorption, particularly of the soft X-rays from the primary wind, increases as the system approaches periastron and the shocks are produced deep inside the primary wind. However, absorption can not account for the drastic X-ray minimum. The 70 day minimum is assumed to result from the collapse of the collision region of the two winds onto the secondary star. This process is assumed to shut down the secondary wind, hence the main X-ray source. We show that this assumption provides a phenomenological description of the X-ray behavior around the minimum.Comment: The Astrophysical Journal, in pres

    A charge-coupled device photometric study of south hemispheric contact binary AE Phoenicis

    Get PDF
    The complete charge-coupled device light curves in B, V, R, and I bands of the short-period binary system, AE Phe, are presented. It is found that the light curves of AE Phe belong to typical EW-type light variation. Photometric solutions were derived by using the 2003 version of the Wilson–Devinney code. It showed that AE Phe is a Wsubtype shallow-contact system (f = 14.6%(±0.5%)) with a mass ratio of q = 2.5491(±0.0092). The temperature difference between the two components is 227 K. Analysis of the O − C curve suggests that the period of AE Phe shows a long-term continuous increase at a rate of dP /dt = +6.17(±0.44) × 10−8 days year−1. The longterm period increase, the marginal-contact configuration, and the astrophysical parameters of the binary system, all suggest that it is a shallow-contact binary undergoing a thermal relaxation oscillation evolving into a detached binary.Fil: He, J. J.. Chinese Academy of Sciences; República de ChinaFil: Qian, S. B.. Chinese Academy of Sciences; República de ChinaFil: Fernandez Lajus, Eduardo Eusebio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Fariña, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin

    Explaining the Early Exit of Eta Carinae from its 2009 X-Ray Minimum with the Accretion Model

    Full text link
    We use the accretion model to explain the early exit of Eta Carinae from its 2009 X-ray minimum. In the accretion model the secondary star accretes mass from the primary wind near periastron passage, a process that suppresses the secondary wind. As the shocked secondary wind is responsible for most of the X-ray emission, the accretion process accounts for the X-ray minimum. The early exit from the 2009 X-ray minimum after four weeks, instead of ten weeks as in the two previous minima, is attributed to the primary wind that during the last minimum was somewhat faster and of lower mass loss rate than during the two previous X-ray minima. This results in a much lower mass accretion rate during the X-ray minimum. We show that using fluctuations in these quantities that are within the range deduced from fluctuations in the X-ray flux outside the minimum, can account for the short duration of the last X-ray minimum. The shorter X-ray minimum may have further implications on the recovery of the system from the spectroscopic event.Comment: ApJ Letters, 5 pages, 1 figur

    A Close-in Substellar Object Orbiting the sdOB-type Eclipsing-Binary System NSVS14256825

    Get PDF
    NSVS 14256825 is the second sdOB + dM eclipsing binary systems with anorbital period of 2.65 hours. The special binary was reported to contain circumbinary planets or brown dwarfs by using the timing method. However, different results were derived by different authors because of the insufficient coverage of eclipse timings. Since 2008, we have monitored this binary for about 10 years by using several telescopes and 84 new times of light minimum in high precision were obtained. It is found that the O-C curve is increasing recently and it shows a cyclic variation with a period of 8.83 years and amplitude of 46.31 seconds. The cyclic change cannot be explained by magnetic activity cycles of the red-dwarf component because the required energy is much larger than that radiated by this component in one whole period. This cyclic change detected in NSVS1425 could be explained by the light-travel time effect via the presence of a third body. The lowest mass of the third body is determined as 14.15 Mjup that is in the transition between planets and brown dwarfs. The substellar object is orbiting around this evolved binary at an orbital separation around 3 AU with an eccentricity of 0.12. These results indicate that NSVS 14256825 is the first sdOB-type eclipsing binary consisting of a hierarchical substellar object. The detection of a close-in substellar companion to NSVS 14256825 will provide some insights on the formation and evolution of sdOB-type binaries and their companions.Fil: Zhu, Li-Ying. Yunnan Observatories, Chinese Academy Of Sciences; ChinaFil: Qian, Sheng Bang. Yunnan Observatories, Chinese Academy Of Sciences; ChinaFil: Fernandez Lajus, Eduardo Eusebio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Wang, Zhi Hua. Yunnan Observatories, Chinese Academy Of Sciences; ChinaFil: Li, Lin Jia. Yunnan Observatories, Chinese Academy Of Sciences; Chin

    Accretion onto the Companion of Eta Carinae During the Spectroscopic Event: III. the He II 4686 Line

    Get PDF
    We continue to explore the accretion model of the massive binary system eta Carinae by studying the anomalously high He II 4686 line. The line appears just before periastron and disappears immediately thereafter. Based on the He II 4686 line emission from O-stars and their modeling in the literature, we postulate that the He II 4686 line comes from the acceleration zone of the secondary stellar wind. We attribute the large increase in the line intensity to a slight increase in the density of the secondary stellar wind in its acceleration zone. The increase in density could be due to the ionization and subsequent deceleration of the wind by the enhanced X-ray emission arising from the shocked secondary wind further downstream or to accretion of the primary stellar wind. Accretion around the secondary equatorial plane gives rise to collimation of the secondary wind, which increases its density, hence enhancing the He II 4686 emission line. In contrast with previous explanations, the presently proposed model does not require a prohibitively high X-ray flux to directly photoionize the He.Comment: ApJ, in pres
    corecore