30 research outputs found
Methylthioadenosine phosphorylase gene expression is impaired in human liver cirrhosis and hepatocarcinoma
Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine and adenine salvage pathways. In mammals, the liver plays a central role in methionine metabolism, and this essential function is lost in the progression from liver cirrhosis to hepatocarcinoma. Deficient MTAP gene expression has been recognized in many transformed cell lines and tissues. In the present work, we have studied the expression of MTAP in human and experimental liver cirrhosis and hepatocarcinoma. We observe that MTAP gene expression is significantly reduced in human hepatocarcinoma tissues and cell lines. Interestingly, MTAP gene expression was also impaired in the liver of CCl4-cirrhotic rats and cirrhotic patients. We provide evidence indicating that epigenetic mechanisms, involving DNA methylation and histone deacetylation, may play a role in the silencing of MTAP gene expression in hepatocarcinoma. Given the recently proposed tumor suppressor activity of MTAP, our observations can be relevant to the elucidation of the molecular mechanisms of multistep hepatocarcinogenesis
Molecular profiling of hepatocellular carcinoma in mice with a chronic deficiency of hepatic s-adenosylmethionine: relevance in human liver diseases
S-adenosylmethionine arises as a central molecule in the preservation of liver homeostasis as a chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. In the present work, we have attempted a comprehensive analysis of proteins associated with hepatocarcinogenesis in MAT1A knock out mice using a combination of two-dimensional electrophoresis and mass spectrometry, to then apply the resulting information to identify hallmarks of human HCC. Our results suggest the existence of individual-specific factors that might condition the development of preneoplastic lesions. Proteomic analysis allowed the identification of 151 differential proteins in MAT1A-/- mice tumors. Among all differential proteins, 27 changed in at least 50% of the analyzed tumors, and some of these alterations were already detected months before the development of HCC in the KO liver. The expression level of genes coding for 13 of these proteins was markedly decreased in human HCC. Interestingly, seven of these genes were also found to be down-regulated in a pretumoral condition such as cirrhosis, while depletion of only one marker was assessed in less severe liver disorders
Redox regulation of methylthioadenosine phosphorylase in liver cells: molecular mechanism and functional implications
MTAP (5'-methylthioadenosine phosphorylase) catalyses the reversible phosphorolytic cleavage of methylthioadenosine leading to the production of methylthioribose-1-phosphate and adenine. Deficient MTAP activity has been correlated with human diseases including cirrhosis and hepatocellular carcinoma. In the present study we have investigated the regulation of MTAP by ROS (reactive oxygen species). The results of the present study support the inactivation of MTAP in the liver of bacterial LPS (lipopolysaccharide)-challenged mice as well as in HepG2 cells after exposure to t-butyl hydroperoxide. Reversible inactivation of purified MTAP by hydrogen peroxide results from a reduction of V(max) and involves the specific oxidation of Cys(136) and Cys(223) thiols to sulfenic acid that may be further stabilized to sulfenyl amide intermediates. Additionally, we found that Cys(145) and Cys(211) were disulfide bonded upon hydrogen peroxide exposure. However, this modification is not relevant to the mediation of the loss of MTAP activity as assessed by site-directed mutagenesis. Regulation of MTAP by ROS might participate in the redox regulation of the methionine catabolic pathway in the liver. Reduced MTA (5'-deoxy-5'-methylthioadenosine)-degrading activity may compensate for the deficient production of the precursor S-adenosylmethionine, allowing maintenance of intracellular MTA levels that may be critical to ensure cellular adaptation to physiopathological conditions such as inflammation
Omics approaches in pancreatic adenocarcinoma
Pancreatic ductal adenocarcinoma, which represents 80% of pancreatic cancers, is mainly diagnosed when treatment with curative intent is not possible. Consequently, the overall five-year survival rate is extremely dismalâaround 5% to 7%. In addition, pancreatic cancer is expected to become the second leading cause of cancer-related death by 2030. Therefore, advances in screening, prevention and treatment are urgently needed. Fortunately, a wide range of approaches could help shed light in this area. Beyond the use of cytological or histological samples focusing in diagnosis, a plethora of new approaches are currently being used for a deeper characterization of pancreatic ductal adenocarcinoma, including genetic, epigenetic, and/or proteo-transcriptomic techniques. Accordingly, the development of new analytical technologies using body fluids (blood, bile, urine, etc.) to analyze tumor derived molecules has become a priority in pancreatic ductal adenocarcinoma due to the hard accessibility to tumor samples. These types of technologies will lead us to improve the outcome of pancreatic ductal adenocarcinoma patients
Smelling the dark proteome: Functional characterization of PITH domain-containing protein 1 (C1orf128) in olfactory metabolism
The Human Proteome Project (HPP) consortium aims to functionally characterize the dark proteome. On the basis of the relevance of olfaction in early neurodegeneration, we have analyzed the dark proteome using data mining in public resources and omics data sets derived from the human olfactory system. Multiple dark proteins localize at synaptic terminals and may be involved in amyloidopathies such as Alzheimerâs disease (AD). We have characterized the dark PITH domain-containing protein 1 (PITHD1) in olfactory metabolism using bioinformatics, proteomics, in vitro and in vivo studies, and neuropathology. PITHD1â/â mice exhibit olfactory bulb (OB) proteome changes related to synaptic transmission, cognition, and memory. OB PITHD1 expression increases with age in wild-type (WT) mice and decreases in Tg2576 AD mice at late stages. The analysis across 6 neurological disorders reveals that olfactory tract (OT) PITHD1 is specifically upregulated in human AD. Stimulation of olfactory neuroepithelial (ON) cells with PITHD1 alters the ON phosphoproteome, modifies the proliferation rate, and induces a pro-inflammatory phenotype. This workflow applied by the Spanish C-HPP and Human Brain Proteome Project (HBPP) teams across the ON-OB-OT axis can be adapted as a guidance to decipher functional features of dark proteins. Data are available via ProteomeXchange with identifiers PXD018784 and PXD021634
Toward the discovery of new biomarkers of hepatocellular carcinoma by proteomics
Primary liver cancer is the fifth most frequent neoplasm and the third most common cause of cancer-related death, with more than 500,000 new cases diagnosed yearly. The outcome for hepatocellular carcinoma (HCC) patients still remains dismal, partly because of our limited knowledge of its molecular pathogenesis and the difficulty in detecting the disease at its early stages. Therefore, studies aimed at the definition of the mechanisms associated with HCC progression and the identification of new biomarkers leading to early diagnosis and more effective therapeutic interventions are urgently needed. Proteomics is a rapidly expanding discipline that is expected to change the way in which diseases will be diagnosed, treated, and monitored in the near future. In the last few years, HCC has been extensively investigated using different proteomic approaches on HCC cell lines, animal models, and human tumor tissues. In this review, state-of-the-art technology on proteomics is overviewed, and recent advances in liver cancer proteomics and their clinical projections are discussed
Proteomic analysis of liver diseases: molecular mechanisms and biomarker discovery
Liver diseases afflict more than 10% of the world population. Although the main risk factors are known and the population at risk is monitored, new biomarkers are urgently needed to allow early diagnosis and hence more effective therapeutic interventions. Here, we revise the contribution of proteomics to the study of liver diseases and its potential impact in the clinical practice is evaluated
Mass spectrometric characterization of mitochondrial complex I NDUFA10 variants
In the present study, we have used a combination of 2-DE and MS to isolate and characterize two variants of the mitochondrial complex I subunit NDUFA10 from Wistar rat brain. Extensive MS/MS analysis revealed that a D/N substitution at position 120 resulting from a 353A/G transition in the coding gene is the biochemical difference between the two most abundant NDUFA10 isoforms. Moreover, 33 modifications of distinct chemical nature targeting 59 specific residues were found to be common to the acidic and basic forms. Positions C67, H149 and H322 of NDUFA10 were specially targeted by different modifications suggesting the high reactivity of these residues and their potential implication in the regulation of the protein function. Together with nonenzymatic modifications that can form in the sample isolation and workup steps, such as oxidation of methionine, tryptophan, cysteine and histidine, we describe amino acid variants of unknown chemical structure that must be further characterized, as well as accumulation of R, K and H methylations and probably K acetylations at the C-terminal region that might play a role in the control of NDUFA10 activity according to similar mechanisms to those described for histones
Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III Characterization of DDX3X as a target of S-adenosylmethionine
Methionine adenosyltransferase I/III (MATI/III) synthesizes S-adenosylmethionine (SAM) in quiescent hepatocytes. Its activity is compromised in most liver diseases including liver cancer. Since SAM is a driver of hepatocytes fate we have studied the effect of re-expressing MAT1A in hepatoma Huh7 cells using proteomics. MAT1A expression leads to SAM levels close to those found in quiescent hepatocytes and induced apoptosis. Normalization of intracellular SAM induced alteration of 128 proteins identified by 2D-DIGE and gel-free methods, accounting for deregulation of central cellular functions including apoptosis, cell proliferation and survival. Human Dead-box protein 3 (DDX3X), a RNA helicase regulating RNA splicing, export, transcription and translation was down-regulated upon MAT1A expression. Our data support the regulation of DDX3X levels by SAM in a concentration and time dependent manner. Consistently, DDX3X arises as a primary target of SAM and a principal intermediate of its antitumoral effect. Based on the parallelism between SAM and DDX3X along the progression of liver disorders, and the results reported here, it is tempting to suggest that reduced SAM in the liver may lead to DDX3X up-regulation contributing to the pathogenic process and that replenishment of SAM might prove to have beneficial effects, at least in part by reducing DDX3X levels. This article is part of a Special Issue entitled: Clinical Proteomics
Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III Characterization of DDX3X as a target of S-adenosylmethionine
Methionine adenosyltransferase I/III (MATI/III) synthesizes S-adenosylmethionine (SAM) in quiescent hepatocytes. Its activity is compromised in most liver diseases including liver cancer. Since SAM is a driver of hepatocytes fate we have studied the effect of re-expressing MAT1A in hepatoma Huh7 cells using proteomics. MAT1A expression leads to SAM levels close to those found in quiescent hepatocytes and induced apoptosis. Normalization of intracellular SAM induced alteration of 128 proteins identified by 2D-DIGE and gel-free methods, accounting for deregulation of central cellular functions including apoptosis, cell proliferation and survival. Human Dead-box protein 3 (DDX3X), a RNA helicase regulating RNA splicing, export, transcription and translation was down-regulated upon MAT1A expression. Our data support the regulation of DDX3X levels by SAM in a concentration and time dependent manner. Consistently, DDX3X arises as a primary target of SAM and a principal intermediate of its antitumoral effect. Based on the parallelism between SAM and DDX3X along the progression of liver disorders, and the results reported here, it is tempting to suggest that reduced SAM in the liver may lead to DDX3X up-regulation contributing to the pathogenic process and that replenishment of SAM might prove to have beneficial effects, at least in part by reducing DDX3X levels. This article is part of a Special Issue entitled: Clinical Proteomics