4 research outputs found

    Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice

    Get PDF
    Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl− extrusion, a process that is facilitated by the neuronal specific K+/Cl− co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl− accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury

    Gene expression in coffee

    Full text link
    Coffee is cultivated in more than 70 countries of the intertropical belt where it has important economic, social and environmental impacts. As for many other crops, the development of molecular biology technics allowed to launch research projects for coffee analyzing gene expression. In the 90s decade, the first expression studies were performed by Northern-blot or PCR, and focused on genes coding enzymes of the main compounds (e.g., storage proteins, sugars, complex polysaccharides, caffeine and chlorogenic acids) found in green beans. Few years after, the development of 454 pyrosequencing technics generated expressed sequence tags (ESTs) obviously from beans but also from other organs (e.g., leaves and roots) of the two main cultivated coffee species, Coffea arabica and C. canephora. Together with the use of real-time quantitative PCR, these ESTs significantly raised the number of coffee gene expression studies leading to the identification of (1) key genes of biochemical pathways, (2) candidate genes involved in biotic and abiotic stresses as well as (3) molecular markers essential to assess the genetic diversity of the Coffea genus, for example. The development of more recent Illumina sequencing technology now allows large-scale transcriptome analysis in coffee plants and opens the way to analyze the effects on gene expression of complex biological processes like genotype and environment interactions, heterosis and gene regulation in polypoid context like in C. arabica. The aim of the present review is to make an extensive list of coffee genes studied and also to perform an inventory of large-scale sequencing (RNAseq) projects already done or on-going

    Notch and interacting signalling pathways in cardiac development, disease, and regeneration

    No full text

    Mycotoxins in Foodstuffs

    No full text
    corecore