4 research outputs found

    Functional near-infrared spectroscopy in the neuropsychological assessment of spatial memory: A systematic review; 35123299

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical imaging technique that employs near-infrared light to measure cortical brain oxygenation. The use of fNIRS has increased exponentially in recent years. Spatial memory is defined as the ability to learn and use spatial information. This neuropsychological process is constantly used in our daily lives and can be measured by fNIRS but no research has reviewed whether this technique can be useful in the neuropsychological assessment of spatial memory. This study aimed to review empirical work on the use of fNIRS in the neuropsychological assessment of human spatial memory. We used four databases: PubMed, PsycINFO, Scopus and Web of Science, and a total of 18 articles were found to be eligible. Most of the articles assessed spatial or visuospatial working memory with a predominance in computer-based tasks, used fNIRS equipment of 16 channels and mainly measured the prefrontal cortex (PFC). The studies analysed found linear or quadratic relationships between working memory load and PFC activity, greater activation of PFC activity and worse behavioural results in healthy older people in comparison with healthy adults, and hyperactivation of PFC as a form of compensation in clinical samples. We conclude that fNIRS is compatible with the standard neuropsychological assessment of spatial memory, making it possible to complement behavioural results with data of cortical functional activity. © 202

    Egocentric and allocentric spatial memory in healthy aging: performance on real-world tasks

    No full text
    Although normal aging has been related to several cognitive difficulties, other processes have been studied less, such as spatial memory. Our aim was to compare egocentric and allocentric memory in an elderly population using ecological tasks. Twenty-eight cognitively unimpaired participants performed Egocentric and Allocentric Spatial Memory Tasks, as well as Spatial Span from CANTAB, Benton's Judge of Line Orientation test (JoLO), and Montreal Cognitive Assessment test (MoCA). The results revealed that younger participants showed better performance than older participants on both the Egocentric and Allocentric Spatial Memory Tasks, although only the Egocentric test was able to discriminate between younger, middle, and older elderly participants. Learning effect was found in Allocentric Spatial Memory Task in younger and older groups, but not in the middle group. Allocentric and egocentric performance was not related to other visuospatial neuropsychological scores and gender did not influence performance in any task. Egocentric and Allocentric Spatial Memory Tasks may be useful tools in early screening for cognitive decline, as they are able to detect age differences in the cognitive unimpaired elderly population

    Differences in distance estimations in real and virtual 3d environments

    No full text
    Computerized 3D modelled spaces are thought to be reliable imitations of Real Environments (REs). Depth perception in displayed Virtual 3D Environments (VEs) is a controversial issue. The present work compared both egocentric and allocentric distances in a RE and a VE. Results showed more errors in the VE (underestimations) than in the RE (overestimations), and a gender effect in the different environments mediated by Mental Rotation ability. Findings suggested that spatial and perceptual processing underlying artificial 3D modelled space may not be similar to cognitive spatial processes in REs
    corecore