5 research outputs found

    Affective speech modulates a cortico-limbic network in real time

    Full text link
    Affect signaling in human communication involves cortico-limbic brain systems for affect information decoding, such as expressed in vocal intonations during affective speech. Both, the affecto-acoustic speech profile of speakers and the cortico-limbic affect recognition network of listeners were previously identified using non-social and non-adaptive research protocols. However, these protocols neglected the inherent socio-dyadic nature of affective communication, thus underestimating the real-time adaptive dynamics of affective speech that maximize listeners' neural effects and affect recognition. To approximate this socio-adaptive and neural context of affective communication, we used an innovative real-time neuroimaging setup that linked speakers' live affective speech production with listeners' limbic brain signals that served as a proxy for affect recognition. We show that affective speech communication is acoustically more distinctive, adaptive, and individualized in a live adaptive setting and more efficiently capitalizes on neural affect decoding mechanisms in limbic and associated networks than non-adaptive affective speech communication. Only live affective speech produced in adaption to listeners' limbic signals was closely linked to their emotion recognition as quantified by speakers' acoustics and listeners' emotional rating correlations. Furthermore, while live and adaptive aggressive speaking directly modulated limbic activity in listeners, joyful speaking modulated limbic activity in connection with the ventral striatum that is, amongst others, involved in the processing of pleasure. Thus, evolved neural mechanisms for affect decoding seem largely optimized for interactive and individually adaptive communicative contexts

    From cognition to gait: the crucial role of attention across the lifespan & the power of musical exposure as a rehabilitation tool

    No full text
    Le but de ma thèse était d'apporter une meilleure compréhension des déclins attentionnels retrouvés chez les personnes âgées, ainsi que le lien avec les chutes observées dans la population vieillissante. Dans un second temps, nous étions intéressés à évaluer la musique comme outil pour améliorer les capacités attentionnelles et diminuer le risque de chute, en particulier en étudiant l'effet d'extraits musicaux évoquant différentes émotions, ainsi que l'impact d'un entraînement basé sur la musique et des exercices physiques. Cette thèse, séparée en trois projets, a apporté deux découvertes majeures dans la compréhension des phénomènes de chutes observées dans la population vieillissante. Premièrement, elle a démontré l'association entre la variabilité de la marche ainsi que les déclins liés aux mécanismes de l'attention. Puis, elle a permis de confirmer les effets bénéfiques de l'utilisation de la musique comme outil de réhabilitation pour améliorer efficacement les habiletés cognitive et motrices dans la population vieillissante

    Brain networks mediating the influence of background music on selective attention

    No full text
    Prevalent across societies and times, music has the ability to enhance attention, a property relevant to clinical applications, but the underlying brain mechanisms remain unknown. It is also unclear whether music produces similar or differential effects with advancing age. Here, we used event-related functional magnetic resonance imaging to investigate the influence of music exposure evoking four types of emotions on distinct attentional components measured with a modified attention network test, across 19 young (21 ± 2.6) and 33 old participants (72 ± 5.4). We then determined whether music-related effects differed across age groups and whether they were associated with particular acoustic features. Background music during selective attention requiring distractor conflict resolution was associated with faster response times and greater activations of fronto-parietal areas during happy and high-arousing music, whereas sad and low-valence music was associated with slower responses and greater occipital recruitment. Shifting and altering components of attention were unaffected. The influence of music on performance and brain networks was similar between age groups. These behavioral and neuroimaging results demonstrate the importance of affective music dimensions, particularly arousal, in enhancing selective attention processes. This study adds novel support to the benefits of music in the rehabilitation of attention functions

    Functional brain changes in sarcopenia: evidence for differential central neural mechanisms in dynapenic older women

    No full text
    Background: The European Working Group on Sarcopenia in Older People (EWGSOP2) recently revised its definition and diagnostic criteria for sarcopenia, placing muscle strength at the forefront. The pathogenesis of dynapenia (or low muscle strength) is still not fully understood, but there is emerging evidence that central neural factors constitute critical determinants. Methods: Our cross-sectional study included 59 community-dwelling older women (mean age 73.1 ± 4.9 years). Participants underwent detailed skeletal muscle assessments for muscle strength defined by handgrip strength and chair rise time measurements using the recently published EWGSOP2 cut-off points. Functional magnetic resonance imaging (fMRI) was assessed during the performance of a cognitive dual-task paradigm, consisting of a baseline, two single-tasks (motor and arithmetic) and one dual-task (motor and arithmetic combined). Results: Forty-seven percent (28/59) of participants were classified as dynapenic. fMRI results revealed a differential recruitment of motor circuits in the brain during the dual-task condition in dynapenic as compared with non-dynapenic participants. In particular, while the brain activity during the single-tasks did not differ between the two groups, only during the dual-task non-dynapenic participants showed significant increased activation in dorsolateral prefrontal and premotor cortex, and in supplementary motor area as compared to dynapenic participants. Conclusion: Our results point to a dysfunctional involvement of brain networks associated with motor control in dynapenia in a multi-tasking paradigm. A better knowledge of the link between dynapenia and brain functions could provide new impulses in the diagnosis and interventions for sarcopenia.</p
    corecore