16 research outputs found

    Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste

    Get PDF
    The air/steam gasification of wood sawdust (SD), plum and olive pits (PP, OP) bio-wastes was studied using macro-thermogravimetric analysis at three heating rates (5, 10, 15K/min). Three stages were identified during gasification process: water vaporization; de-volatilization and char gasification. The experimental data were analysed by applying five model-free methods: Flynn-Wall-Ozawa (FWO), Distributed Activation Energy Model (DAEM), Friedman, Starink, and Kissinger-Akahira-Sunose (KAS), to evaluate the gasification kinetic parameters. The FWO method exhibited the best fit to the experimental results. The pre-exponential factor was estimated using the Kissinger's expression. The average apparent activation energy (E) for the char-gasification step was found to be 218.27 (SD), 143.70 (PP) and 87.89kJ mol-1 (OP). The pre-exponential factors were 6.93 1023 (SD), 5.10 1014 (PP), and 3.71 1009 s-1 (OP). A kinetic model to predict the CO release during the bio-waste decomposition was also proposed and validated. The E values for global release of CO were 87.34 (SD), 67.19 (PP), and 133.23kJ mol-1 (OP). In addition, the thermodynamic parameters ΔS, ΔH and ΔG were calculated from the FWO method. The positive values of ΔH evidenced the global endothermicity of the gasification process over the whole range of the conversion degree. The average ΔG values were 130.53 (SD), 148.17 (PP) and 132.91kJ mol-1 (OP). The average ΔS and ΔG values, together with the Arrhenius kinetic coefficient showed that the reactivity for gasification decreased in the following order: SD>OP>PP. The results are in good agreement with previously reported data.Fil: Fernandez Brizuela, Anabel Alejandra. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química | Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química; ArgentinaFil: Rodriguez Ortiz, Leandro Alexei. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Asensio, Daniela Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química | Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química; ArgentinaFil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química | Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química | Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Grupo Vinculado Instituto de Ingeniería Química; Argentin

    Prediction of the lignocellulosic winery wastes behavior during gasification process in fluidized bed: Experimental and theoretical study

    Get PDF
    This work presents studies about the gasification of the lignocellulosic winery wastes in fluidized bed to obtain energy. Based on the exergy analysis, the exergetic improvement potential (IP) and sustainability index (SI) variations with different operational variables were analyzed. IP increases and SI decreases when moisture content, ER and SBR augment. On the other hand, both indexes present contrary behavior with the temperature increasing. Additionally, the kinetic behavior was investigated using a macro thermo-balance. The thermal decomposition of the studied biomass wastes at three heating rate, 5, 10 and 15 °C/min under steam/air mixture atmosphere show that the gasification takes place in three visible stage: water vaporization, pyrolysis and the last step associated with the reaction of the char by CO 2 . The distributed activation energy model method (DAEM) was used. The decomposition is not a single reaction stage, it includes the contributions of parallel reaction steps on the global reaction rate. Last, the fluidization was analyzed using air at room temperature and local atmospheric pressure. Each experiment was carried out with 100% and 75% v lignocellulosic wastes. Segregation, slugging and channelization in all studied cases. However, the addition of sand particles improves the behavior of both winery wastes.Fil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Fernandez Brizuela, Anabel Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Saffe Pinto, María Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Echegaray, Marcelo Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentin

    Thermal decomposition under oxidative atmosphere of lignocellulosic wastes: Different kinetic methods application

    No full text
    Combustion of six lignocellulosic wastes was studied using thermogravimetric analysis. Experimental data were analyzed using different kinetic methods Kissinger, FWO, DAEM linear multiple regression methods and Coast Redfern method. Also, their thermodynamic parameters (ΔG, ΔH, ΔS) were obtained. The activation energy (E) and the pre-exponential factor (A) values calculated by the DAEM, FWO and Kissinger methods were higher than those obtained by the linear multiple regression and Coast Redfern methods. The E values obtained from the Kissinger method are consistent with the range of values obtained by the FWO and DAEM methods and are very near to their average values (between 52.75 and 116.92 kJ/mol for all studied agro-industrial wastes). DAEM and FWO methods provides E and A distributions, detecting multi-step kinetics. However, Kissinger method provides only one E and A values for all heating rates, similar to obtained values applying DAEM and FWO methods. The linear multiple regression method provides the knowledge of kinetic triplets for each studied heating rate, presenting a slower fit than the other methods. On the other hand, Coast Redfern method supplies these triplets and the reaction mechanisms. However, using this method, the obtained E values are very different to the calculated values applying isoconversional methods. Using the last mentioned methods, the models of volume contraction and first order describe the devolatilization and char combustion stages, respectively. The obtained thermodynamic parameters values show that the lignocellulosic wastes combustion has a low reaction favorability.Fil: Fernandez Brizuela, Anabel Alejandra. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentin

    Kinetic analysis of regional agro-industrial waste combustion

    No full text
    Cuyo Region generates a significant quantity of agro-industrial wastes. To exploit this waste for energy production, a combustor was installed in this region. To improve its design and operation, a kinetic study of six agro-industrial wastes combustion, using thermogravimetric analysis, was made. The results show that this phenomenon occurs in four stages: drying, devolatilization, char combustion and residual combustion. Maximum weight loss occurs during the devolatilization stage, followed by the char combustion. The contraction geometry's model describes the devolatilization, indicating that the degradation rate is controlled by the resulting reaction interface progress toward the solid center. Moreover, the first order reaction model describes the char combustion stages, showing that the reaction rate is proportional to remaining reactant(s) fraction. The highest energy activation values were obtained for sawdust at heating rate equal to 10 K/min and plum pits at heating rate equal to 15 K/min for devolatilization and char combustion, respectively, presenting slower reaction rate and more difficulty of a reaction starting. For both analyzed stages, the activation energy values vary slightly with the heating rate. This variation can be due to the kinetic rate being controlled by the occurrence of physical transformation. It does not depend on mass but it depends on temperature.Fil: Fernandez Brizuela, Anabel Alejandra. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saffe Pinto, María Alejandra. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Rodriguez, Rosa Ana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Agro-industrial wastes pyrolysis:comparison of the kinetic parameters obtained applying different models

    No full text
    Pyrolysis of regional agro-industrial wastes was studied using thermogravimetric analysis. Experimental data were analyzed using different kinetic methods: Kissinger, FWO, linear multiple regression and DAEM methods. The results showed that kinetic parameters values are in acceptable agreement applying different methods and can be used to understand the degradation mechanism during active pyrolysis. The E values calculated by the DAEM, FWO and Kissinger methods were higher than those obtained by the linear multiple regression method. The values of activation energy obtained from the Kissinger method are consistent with the range of values obtained by the FWO and DAEM methods and are very near to their average values (between 130.29 and 261.10 kJ/mol for all studied agro-industrial wastes). DAEM and FWO methods provides E and A distributions but linear multiple regression method provide the knowledge of kinetic triplets for each studied heating rate, presenting a slower good fit than the other methods. However, Kissinger method provides only one E and A values for all heating rates. Considering the application of FWO and DAEM methods, different kinds of reaction mechanisms are produced about a conversion values greater than 0.6-0.7 indicating the beginning of passive pyrolysis. A fluctuation of E was observed, also. All obtained results applying different methods reveal the process complexity and physical transformation the temperaturedependent or contributions of parallel reaction steps can affect this process. Experimental results showed that values of kinetic parameters are in acceptable agreement applying different methods and it could be an auspicious and justifiable feedstock for alternative methods.Fil: Fernandez Brizuela, Anabel Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Palacios, Carlos. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Echegaray, Marcelo Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentin

    Macro-TGA steam-assisted gasification of lignocellulosic wastes

    No full text
    The kinetics of the steam-assisted gasification for three different agro-industrial solid wastes (sawdust, olive and plum pits) was studied by macro thermo-gravimetric analysis (macro-TGA) at different heating rates (5, 10 and 15 K/min). The progressive CO release was moreover monitored to fully identify each step of the global gasification process. A single-step kinetics modelling was applied by using the Coats-Redfern method, with both a first order model for pyrolysis and a Ginstling - Brounstein 3D-diffusion model for the gasification stages, respectively. A comparison between macro-TGA and previous TGA results for the same bio-wastes was performed. Results indicated that the reaction proceeds in three well-defined and subsequent stages, involving water evaporation [298–473 K], biomass de-volatilization [473–648 K] with the highest production of CO, and char gasification as final step. Reaction rate parameters of the Arrhenius equation were determined for both the pyrolysis and gasification steps.Fil: Fernandez Brizuela, Anabel Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Confluencia. Instituto de Investigacion y Desarrollo En Ingenieria de Procesos, Biotecnologia y Energias Alternativas. Grupo Vinculado Instituto de Ingenieria Quimica | Universidad Nacional del Comahue. Instituto de Investigacion y Desarrollo En Ingenieria de Procesos, Biotecnologia y Energias Alternativas. Grupo Vinculado Instituto de Ingenieria Quimica.; ArgentinaFil: Soria, Jose Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Rodriguez, Rosa Ana. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Confluencia. Instituto de Investigacion y Desarrollo En Ingenieria de Procesos, Biotecnologia y Energias Alternativas. Grupo Vinculado Instituto de Ingenieria Quimica | Universidad Nacional del Comahue. Instituto de Investigacion y Desarrollo En Ingenieria de Procesos, Biotecnologia y Energias Alternativas. Grupo Vinculado Instituto de Ingenieria Quimica.; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Baeyens, Jan. Beijing University of Chemical Technology; ChinaFil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentin
    corecore