45,597 research outputs found

    Normal modes of carbon nanotubes: similarities and differences with their continuum counterpart

    No full text
    Carbon nanotubes (CNTs) possess a range of unusually interesting and useful physicochemical properties. In this paper, the mechanical properties of single wall CNTs are investigated via free vibration normal modes using molecular mechanics models. The forcefield used is empirical and the usual assumptions of potential energy contributions coming from bondstretching, bond angle bending, and bond twisting for two, three, and four atom interactions respectively, are made. The validity of continuum behaviour is examined by comparing the modal spacing obtained from the molecular mechanics models and that obtained from classical continuum elastodynamics. The breakdown of continuum behaviour is systematically characterised for various combinations of length to diameter ratio as well as for the number of atoms per circumference

    Investigations in space-related molecular biology

    Get PDF
    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyze

    Mission: Impossible (Escape from the Lyman Limit)

    Full text link
    We investigate the intrinsic opacity of high-redshift galaxies to outgoing ionising photons using high-quality photometry of a sample of 27 spectroscopically-identified galaxies of redshift 1.9<z<3.5 in the Hubble Deep Field. Our measurement is based on maximum-likelihood fitting of model galaxy spectral energy distributions-including the effects of intrinsic Lyman-limit absorption and random realizations of intervening Lyman-series and Lyman-limit absorption-to photometry of galaxies from space- and ground-based broad-band images. Our method provides several important advantages over the methods used by previous groups, including most importantly that two-dimensional sky subtraction of faint-galaxy images is more robust than one-dimensional sky subtraction of faint-galaxy spectra. We find at the 3sigma statistical confidence level that on average no more than 4% of the ionising photons escape galaxies of redshift 1.9<z<3.5. This result is consistent with observations of low- and moderate-redshift galaxies but is in direct contradiction to a recent result based on medium-resolution spectroscopy of high-redshift (z~3) galaxies. Dividing our sample in subsamples according to luminosity, intrinsic ultraviolet colour, and redshift, we find no evidence for selection effects that could explain such discrepancy. Even when all systematic effects are included, the data could not realistically accomodate any escape fraction value larger than ~15%.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 8 pages, 4 b/w figures, MNRAS styl

    Antiferromagnetic O(N) models in four dimensions

    Get PDF
    We study the antiferromagnetic O(N) model in the F_4 lattice. Monte Carlo simulations are applied for investigating the behavior of the transition for N=2,3. The numerical results show a first order nature but with a large correlation length. The NN \to \infty limit is also considered with analytical methods.Comment: 14 pages, 3 postscript figure

    Critical behavior of long straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations

    Full text link
    The critical behavior of long straight rigid rods of length kk (kk-mers) on square and triangular lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel kk-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density θc\theta_c. Two analytical techniques were combined with Monte Carlo simulations to predict the dependence of θc\theta_c on kk, being θc(k)k1\theta_c(k) \propto k^{-1}. The first involves simple geometrical arguments, while the second is based on entropy considerations. Our analysis allowed us also to determine the minimum value of kk (kmin=7k_{min}=7), which allows the formation of a nematic phase on a triangular lattice.Comment: 23 pages, 5 figures, to appear in The Journal of Chemical Physic
    corecore