7 research outputs found

    The CO-CAVITY project: Molecular gas in void galaxies

    Get PDF
    Galaxies in voids have experienced a different environment than those in denser environments during their entire existence. Their properties are possibly different from galaxies in denser media. The CO-CAVITY project aims at studying the molecular gas contents of void galaxies and compare with non-void ones. To this end, 106 galaxies drawn from the mother CAVITY Integral Field Unit (IFU) sample have been observed with the EMIR receiver at the IRAM 30m telescope in Pico Veleta targeting the CO(1–0) and CO(2–1) lines. The data gathered allows deriving the star formation efficiency, molecular-toatomic gas mass ratio and molecular-to-stellar mass ratio. The preliminary results presented here suggest that in general, there are no significant differences (within the errors) in the molecular gas content of void and control samples, although some deviations are observed in certain ranges when splitting the samples in stellar mass bins

    Stellar mass-metallicity relation throughout the large-scale structure of the Universe: CAVITY mother sample

    Get PDF
    International audienceVoid galaxies are essential for understanding the physical processes that drive galaxy evolution because they are less affected by external factors than galaxies in denser environments, that is, in filaments, walls, and clusters. The stellar metallicity of a galaxy traces the accumulated fossil record of the star formation through the entire life of the galaxy. A comparison of the stellar metallicity of galaxies in various environments, including voids, filaments, walls, and clusters can provide valuable insights into how the large-scale environment affects the chemical evolution of the galaxy. We present the first comparison of the relation of the total stellar mass versus central stellar metallicity between galaxies in voids, filaments, walls, and clusters with different star formation history (SFH) types, morphologies, and colours for stellar masses between 108.010^{8.0} to 1011.510^{11.5} solar masses and redshift 0.01<z<0.050.01<z<0.05. We applied non-parametric full spectral fitting techniques (pPXF and STECKMAP) to 10807 spectra from the SDSS-DR7 (987 in voids, 6463 in filaments and walls, and 3357 in clusters) and derived their central mass-weighted average stellar metallicity ([M/H]M\rm [M/H]_M). We find that galaxies in voids have slightly lower stellar metallicities on average than galaxies in filaments and walls (by~ 0.1\sim~0.1~dex), and they are much lower than those of galaxies in clusters (by~ 0.4\sim~0.4~dex). These differences are more significant for low-mass ( 109.25 M \sim~10^{9.25}~{\rm M_\odot}) than for high-mass galaxies, for long-timescale SFH (extended along time) galaxies than for short-timescale SFHs (concentrated at early times) galaxies, for spiral than for elliptical galaxies, and for blue than for red galaxies

    The CAVITY project: The spatially resolved stellar population properties of galaxies in voids

    No full text
    International audienceThe Universe is shaped as a web-like structure, formed by clusters, filaments, and walls that leave large low number-density volumes in between named voids. Galaxies in voids have been found to be of a later type, bluer, less massive, and to have a slower evolution than galaxies in denser environments (filaments and walls). However, the effect of the void environment on their stellar population properties is still unclear. We aim to address this question using 118 optical integral field unit datacubes from the Calar Alto Void Integral-field Treasury surveY (CAVITY), observed with the PMAS/PPaK spectrograph at the 3.5 m telescope at the Calar Alto Observatory (Almería, Spain). We fitted their spectra from 3750 Å to 7000 Å with the non-parametric full spectral fitting code STARLIGHT to estimate their stellar population properties: stellar mass, stellar mass surface density, age, star formation rate (SFR), and specific star formation rate (sSFR). We analysed the results through the global properties, assessing the behaviour of the whole galaxy, and the spatially resolved information, by obtaining the radial profiles from the 2D maps up to the 2 half-light radius of each stellar population property. The results were examined with respect to their morphological type and stellar mass. Then, we compared them with a control sample of galaxies in filaments and walls, selected from the CALIFA survey and analysed following the same procedure. To make a fair comparison between the samples, we selected a twin filament galaxy for each void galaxy of the same morphological type and closest stellar mass, to match the void galaxy sample as much as possible in morphology and mass. Key findings from our global and spatially resolved analysis include void galaxies having a slightly higher half-light radius (HLR), lower stellar mass surface density, and younger ages across all morphological types, and slightly elevated SFR and sSFR (only significant enough for Sas). Many of these differences appear in the outer parts of spiral galaxies (HLR > 1), where discs are younger and exhibit a higher sSFR compared to galaxies in filaments and walls, indicative of less evolved discs. This trend is also found for early-type spirals, suggesting a slower transition from star-forming to quiescent states in voids. Our analysis indicates that void galaxies, influenced by their surroundings, undergo a more gradual evolution, especially in their outer regions, with a more pronounced effect for low-mass galaxies. We find that below a certain mass threshold, environmental processes play a more influential role in galactic evolution.Key words: techniques: spectroscopic / galaxies: evolution / galaxies: fundamental parameters / galaxies: star formation / galaxies: stellar conten

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore