24,372 research outputs found

    Supersymmetric partners of the trigonometric Poschl-Teller potentials

    Full text link
    The first and second-order supersymmetry transformations are used to generate Hamiltonians with known spectra departing from the trigonometric Poschl-Teller potentials. The several possibilities of manipulating the initial spectrum are fully explored, and it is shown how to modify one or two levels, or even to leave the spectrum unaffected. The behavior of the new potentials at the boundaries of the domain is studied.Comment: 20 pages, 4 figure

    On Packet Scheduling with Adversarial Jamming and Speedup

    Full text link
    In Packet Scheduling with Adversarial Jamming packets of arbitrary sizes arrive over time to be transmitted over a channel in which instantaneous jamming errors occur at times chosen by the adversary and not known to the algorithm. The transmission taking place at the time of jamming is corrupt, and the algorithm learns this fact immediately. An online algorithm maximizes the total size of packets it successfully transmits and the goal is to develop an algorithm with the lowest possible asymptotic competitive ratio, where the additive constant may depend on packet sizes. Our main contribution is a universal algorithm that works for any speedup and packet sizes and, unlike previous algorithms for the problem, it does not need to know these properties in advance. We show that this algorithm guarantees 1-competitiveness with speedup 4, making it the first known algorithm to maintain 1-competitiveness with a moderate speedup in the general setting of arbitrary packet sizes. We also prove a lower bound of ϕ+12.618\phi+1\approx 2.618 on the speedup of any 1-competitive deterministic algorithm, showing that our algorithm is close to the optimum. Additionally, we formulate a general framework for analyzing our algorithm locally and use it to show upper bounds on its competitive ratio for speedups in [1,4)[1,4) and for several special cases, recovering some previously known results, each of which had a dedicated proof. In particular, our algorithm is 3-competitive without speedup, matching both the (worst-case) performance of the algorithm by Jurdzinski et al. and the lower bound by Anta et al.Comment: Appeared in Proc. of the 15th Workshop on Approximation and Online Algorithms (WAOA 2017

    Optimal quantum state reconstruction for cold trapped ions

    Full text link
    We study the physical implementation of an optimal tomographic reconstruction scheme for the case of determining the state of a multi-qubit system, where trapped ions are used for defining qubits. The protocol is based on the use of mutually unbiased measurements and on the physical information described in H. H\"{a}ffner \emph{et. al} [Nature \textbf{438}, 643-646 (2005)]. We introduce the concept of physical complexity for different types of unbiased measurements and analyze their generation in terms of one and two qubit gates for trapped ions.Comment: Accepted for publication in Phys. Rev. A as Rap. Com

    Structure of the Vacuum in Deformed Supersymmetric Chiral Models

    Get PDF
    We analyze the vacuum structure of N=1/2 chiral supersymmetric theories in deformed superspace. In particular we study O'Raifeartaigh models with C-deformed superpotentials and canonical and non-canonical deformed Kahler potentials. We find conditions under which the vacuum configurations are affected by the deformations.Comment: 15 pages, minor corrections. Version to appear in JHE

    Separation and fractionation of order and disorder in highly polydisperse systems

    Get PDF
    Microcanonical Monte Carlo simulations of a polydisperse soft-spheres model for liquids and colloids have been performed for very large polydispersity, in the region where a phase-separation is known to occur when the system (or part of it) solidifies. By studying samples of different sizes, from N=256 to N=864, we focus on the nature of the two distinct coexisting phases. Measurements of crystalline order in particles of different size reveal that the solid phase segregates between a crystalline solid with cubic symmetry and a disordered phase. This phenomenon is termed fractionation.Comment: 8 pages, 5 figure
    corecore