1,233 research outputs found

    Fundamental diagrams for kinetic equations of traffic flow

    Full text link
    In this paper we investigate the ability of some recently introduced discrete kinetic models of vehicular traffic to catch, in their large time behavior, typical features of theoretical fundamental diagrams. Specifically, we address the so-called "spatially homogeneous problem" and, in the representative case of an exploratory model, we study the qualitative properties of its solutions for a generic number of discrete microstates. This includes, in particular, asymptotic trends and equilibria, whence fundamental diagrams originate.Comment: 14 page

    A fully-discrete-state kinetic theory approach to modeling vehicular traffic

    Get PDF
    This paper presents a new mathematical model of vehicular traffic, based on the methods of the generalized kinetic theory, in which the space of microscopic states (position and velocity) of the vehicles is genuinely discrete. While in the recent literature discrete-velocity kinetic models of car traffic have already been successfully proposed, this is, to our knowledge, the first attempt to account for all aspects of the physical granularity of car flow within the formalism of the aforesaid mathematical theory. Thanks to a rich but handy structure, the resulting model allows one to easily implement and simulate various realistic scenarios giving rise to characteristic traffic phenomena of practical interest (e.g., queue formation due to roadworks or to a traffic light). Moreover, it is analytically tractable under quite general assumptions, whereby fundamental properties of the solutions can be rigorously proved.Comment: 22 pages, 3 figure

    A fully-discrete-state kinetic theory approach to traffic flow on road networks

    Full text link
    This paper presents a new approach to the modeling of vehicular traffic flows on road networks based on kinetic equations. While in the literature the problem has been extensively studied by means of macroscopic hydrodynamic models, to date there are still not, to the authors' knowledge, contributions tackling it from a genuine statistical mechanics point of view. Probably one of the reasons is the higher technical complexity of kinetic traffic models, further increased in case of several interconnected roads. Here such difficulties of the theory are overcome by taking advantage of a discrete structure of the space of microscopic states of the vehicles, which is also significant in view of including the intrinsic microscopic granularity of the system in the mesoscopic representation.Comment: 36 pages, 10 figure

    A Statistical Model of Magnetic Islands in a Large Current Layer

    Full text link
    We develop a statistical model describing the dynamics of magnetic islands in very large current layers that develop in space plasma. Two parameters characterize the island distribution: the flux contained in the island and the area it encloses. We derive an integro-differential evolution equation for this distribution function, based on rules that govern the small-scale generation of secondary islands, the rates of island growth, and island merging. Our numerical solutions of this equation produce island distributions relevant to the magnetosphere and corona. We also derive and analytically solve a differential equation for large islands that explicitly shows the role merging plays in island growth.Comment: 4 pages, 3 figure
    • …
    corecore