1,383 research outputs found

    Interpreting the Ionization Sequence in AGN Emission-Line Spectra

    Get PDF
    We investigate the physical cause of the great range in the ionization level seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field independent component analysis identifies examples of individual SDSS galaxies whose spectra are not dominated by emission due to star formation (SF), which we designate as AGN. We assembled high S/N ratio composite spectra of a sequence of these AGN defined by the ionization level of their narrow-line regions (NLR), extending down to very low-ionization cases. We used a local optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN sequence. These included the weak lines that can be measured only in the co-added spectra, providing consistency checks on strong line diagnostics. After integrating over a wide range of radii and densities our models indicate that the radial extent of the NLR is the major parameter in determining the position of high to moderate ionization AGN along our sequence, providing a physical interpretation for their systematic variation. Higher ionization AGN contain optimally emitting clouds that are more concentrated towards the central continuum source than in lower ionization AGN. Our LOC models indicate that for the objects that lie on our AGN sequence, the ionizing luminosity is anticorrelated with the NLR ionization level, and hence anticorrelated with the radial concentration and physical extent of the NLR. A possible interpretation that deserves further exploration is that the ionization sequence might be an age sequence where low ionization objects are older and have systematically cleared out their central regions by radiation pressure. We consider that our AGN sequence instead represents a mixing curve of SF and AGN spectra, but argue that while many galaxies do have this type of composite spectra, our AGN sequence appears to be a special set of objects with negligible SF excitation.Comment: 57 pages; 18 figures, accepted by MNRA

    Locally Optimally-emitting Clouds and the Narrow Emission Lines in Seyfert Galaxies

    Get PDF
    The narrow emission line spectra of active galactic nuclei are not accurately described by simple photoionization models of single clouds. Recent Hubble Space Telescope images of Seyfert 2 galaxies show that these objects are rich with ionization cones, knots, filaments, and strands of ionized gas. Here we extend to the narrow line region the ``locally optimally emitting cloud'' (LOC) model, in which the observed spectra are predominantly determined by powerful selection effects. We present a large grid of photoionization models covering a wide range of physical conditions and show the optimal conditions for producing many of the strongest emission lines. We show that the integrated narrow line spectrum can be predicted by an integration of an ensemble of clouds, and we present these results in the form of diagnostic line ratio diagrams making comparisons with observations. We also predict key diagnostic line ratios as a function of distance from the ionizing source, and compare these to observations. The predicted radial dependence of the [O III]/[O II] ratio may be matched to the observed one in NGC4151, if the narrow line clouds see a more intense continuum than we see. The LOC scenario when coupled with a simple Keplerian gravitational velocity field will quite naturally predict the observed line width versus critical density relationship. The influence of dust within the ionized portion of the clouds is discussed and we show that the more neutral gas is likely to be dusty, although a high ionization dust-free region is most likely present too. This argues for a variety of NLR cloud origins.Comment: 29 pages plus 16 figures, accepted for publication in Ap

    Classification and analysis of emission-line galaxies using mean field independent component analysis

    Get PDF
    We present an analysis of the optical spectra of narrow emission-line galaxies, based on mean field independent component analysis (MFICA). Samples of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to generate compact sets of `continuum' and `emission-line' component spectra. These components can be linearly combined to reconstruct the observed spectra of a wider sample of galaxies. Only 10 components - five continuum and five emission line - are required to produce accurate reconstructions of essentially all narrow emission-line galaxies; the median absolute deviations of the reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying the MFICA components to a large sample of SDSS galaxies we identify the regions of parameter space that correspond to pure star formation and pure active galactic nucleus (AGN) emission-line spectra, and produce high S/N reconstructions of these spectra. The physical properties of the pure star formation and pure AGN spectra are investigated by means of a series of photoionization models, exploiting the faint emission lines that can be measured in the reconstructions. We are able to recreate the emission line strengths of the most extreme AGN case by assuming the central engine illuminates a large number of individual clouds with radial distance and density distributions, f(r) ~ r^gamma and g(n) ~ n^beta, respectively. The best fit is obtained with gamma = -0.75 and beta = -1.4. From the reconstructed star formation spectra we are able to estimate the starburst ages. These preliminary investigations serve to demonstrate the success of the MFICA-based technique in identifying distinct emission sources, and its potential as a tool for the detailed analysis of the physical properties of galaxies in large-scale surveys.Comment: MNRAS accepted. 29 pages, 24 figures, 3 table

    Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions

    Get PDF
    We present a complete set of analytic fits to the non-relativistic photoionization cross sections for the ground states of atoms and ions of elements from H through Si, and S, Ar, Ca, and Fe. Near the ionization thresholds, the fits are based on the Opacity Project theoretical cross sections interpolated and smoothed over resonances. At higher energies, the fits reproduce calculated Hartree-Dirac-Slater photoionization cross sections.Comment: 24 pages including Postscript figures and tables, uses aaspp4.sty, accepted for publication in Astrophysical Journal. Misprint in Eq.(1) is correcte

    Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density

    Get PDF
    The requirement of intermediate line component in the recently observed spectra of several AGNs points to possibility of the existence of a physically separate region between broad line region (BLR) and narrow line region (NLR). In this paper we explore the emission from intermediate line region (ILR) by using the photoionization simulations of the gas clouds distributed radially from the AGN center. The gas clouds span distances typical for BLR, ILR and NLR, and the appearance of dust at the sublimation radius is fully taken into account in our model. Single cloud structure is calculated under the assumption of the constant pressure. We show that the slope of the power law cloud density radial profile does not affect the existence of ILR in major types of AGN. We found that the low ionization iron line, Fe~II, appears to be highly sensitive for the presence of dust and therefore becomes potential tracer of dust content in line emitting regions. We show that the use of disk-like cloud density profile computed at the upper part of the accretion disc atmosphere reproduces the observed properties of the line emissivities. In particular, the distance of Hβ{\beta} line inferred from our model agrees with that obtained from the reverberation mapping studies in Sy1 galaxy NGC 5548.Comment: 15 pages, 13 figure

    The intermediate line region in active galactic nuclei

    Get PDF
    We show that the recently observed suppression of the gap between the broad line region (BLR) and the narrow line region (NLR) in some AGN can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate velocity full width half maximum (FWHM) \sim 700 - 1200 km s1^{-1}. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As it was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of {\sc cloudy} photoionization code, show that the differences in the shape of spectral energy distribution (SED) from the central region of AGN, do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission vs radius exists for all lines at the dust sublimation radius. However, increasing the gas density to \sim 1011.5^{11.5} cm3^{-3} at the sublimation radius provides the continuous line emission vs radius and fully explains the recently observed lack of apparent gap in some AGN. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission line clouds.Comment: 9 pages, 6 figures, accepted for publication in Ap

    Interpreting the Ionization Sequence in Star-Forming Galaxy Emission-Line Spectra

    Get PDF
    High ionization star forming (SF) galaxies are easily identified with strong emission line techniques such as the BPT diagram, and form an obvious ionization sequence on such diagrams. We use a locally optimally emitting cloud model to fit emission line ratios that constrain the excitation mechanism, spectral energy distribution, abundances and physical conditions along the star-formation ionization sequence. Our analysis takes advantage of the identification of a sample of pure star-forming galaxies, to define the ionization sequence, via mean field independent component analysis. Previous work has suggested that the major parameter controlling the ionization level in SF galaxies is the metallicity. Here we show that the observed SF- sequence could alternatively be interpreted primarily as a sequence in the distribution of the ionizing flux incident on gas spread throughout a galaxy. Metallicity variations remain necessary to model the SF-sequence, however, our best models indicate that galaxies with the highest and lowest observed ionization levels (outside the range -0.37 < log [O III]/H\b{eta} < -0.09) require the variation of an additional physical parameter other than metallicity, which we determine to be the distribution of ionizing flux in the galaxy.Comment: 41 pages, 17 figures, 9 tables, accepted to MNRA

    The Demise of the Classical BLR in the Luminous Quasar PG1416-129

    Get PDF
    New observations of the broad-line quasar PG1416-129 reveal a large decline in its continuum luminosity over the past ten years. In response to the continuum change the ``classical'' broad component of Hbeta has almost completely disappeared (a x10 decrease in flux). In its place there remains a redshifted/redward asymmetric very broad emission line component. The significance of this change is multifold: (1) It confirms the existence of a distinct redshifted Very Broad Line Region (VBLR) component that persists after the demise of the broad component and that is frequently observed, along with the broad component, in radio-loud sources. (2) The smaller (x2) intensity change in the Hbeta very broad component supports the previously advanced idea that the VBLR is physically distinct and likely to arise in an optically thin region close to the central source. (3) The presence of a strong very broad component in the radio-quiet quasar PG1416-129 reinforces the notion that such ``population B'' quasars share similar spectroscopic (and hence geometrical and kinematical) properties to radio-loud sources. (4) AGN can show broad, very broad, or both line components simultaneously, making statistical comparisons of source profile widths difficult. (5) The interpretation, in reverberation studies, of the presence or lack of correlated response in broad line wings will be affected by this composite BLR/VBLR structure.Comment: accepted to Astrophys. J. Letters; 12 pages, 2 figures, 2 table

    The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster

    Get PDF
    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blue shifted because the redshifted outflows pass into the optically thick Photon Dominated Region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD data base.Comment: 152 pages, 46 figures, 7 tables. Accepted by A
    corecore