4 research outputs found

    Sustainability Assessment of the End-of-Life Technologies for Biocomposite Waste in the Aviation Industry

    No full text
    Biocomposites have emerged as promising alternative materials for the aviation industry. However, there is a limited body of scientific literature addressing the end-of-life management of biocomposites. This article evaluated different end-of-life technologies for biocomposite recycling in a structured, five-step approach applying the innovation funnel principle. First, ten end-of-life (EoL) technologies were compared in terms of their circularity potential and technology readiness levels (TRL). Second, a multi-criteria decision analysis (MCDA) was carried out to find out the top four most promising technologies. Afterwards, experimental tests were conducted at a laboratory scale to evaluate the top three technologies for recycling biocomposites by analysing (1) three types of fibres (basalt, flax, carbon) and (2) two types of resins (bioepoxy and Polyfurfuryl Alcohol (PFA) resins). Subsequently, further experimental tests were performed to identify the top two recycling technologies for the EoL treatment of biocomposite waste from the aviation industry. Finally, the sustainability and economic performance of the top two identified EoL recycling technologies were evaluated through life cycle assessment (LCA) and techno-economic analysis (TEA). The experimental results, performed via the LCA and TEA assessments, demonstrated that both solvolysis and pyrolysis are technically, economically, and environmentally viable options for the EoL treatment of biocomposite waste from the aviation industry

    Greenhouse gas benefits from direct chemical recycling of mixed plastic waste

    No full text
    Dealing with heterogeneous plastic waste – i.e., high polymer heterogeneity, additives, and contaminants – and lowering greenhouse gas (GHG) emissions from plastic production requires integrated solutions. Here, we quantified current and future GHG footprints of direct chemical conversion of heterogeneous post-consumer plastic waste feedstock to olefins, a base material for plastics. The net GHG footprint of this recycling system is −0.04 kg CO2-eq./kg waste feedstock treated, including credits from avoided production of virgin olefins, electricity, heat, and credits for the partial biogenic content of the waste feedstock. Comparing chemical recycling of this feedstock to incineration with energy recovery presents GHG benefits of 0.82 kg CO2-eq./kg waste feedstock treated. These benefits were found to increase to 1.37 kg CO2-eq./kg waste feedstock treated for year 2030 when including (i) decarbonization of steam and electricity production and (ii) process optimizations to increase olefin yield through carbon capture and utilization and conversion of side-products

    Greenhouse gas benefits from direct chemical recycling of mixed plastic waste

    Get PDF
    Dealing with heterogeneous plastic waste – i.e., high polymer heterogeneity, additives, and contaminants – and lowering greenhouse gas (GHG) emissions from plastic production requires integrated solutions. Here, we quantified current and future GHG footprints of direct chemical conversion of heterogeneous post-consumer plastic waste feedstock to olefins, a base material for plastics. The net GHG footprint of this recycling system is −0.04 kg CO2-eq./kg waste feedstock treated, including credits from avoided production of virgin olefins, electricity, heat, and credits for the partial biogenic content of the waste feedstock. Comparing chemical recycling of this feedstock to incineration with energy recovery presents GHG benefits of 0.82 kg CO2-eq./kg waste feedstock treated. These benefits were found to increase to 1.37 kg CO2-eq./kg waste feedstock treated for year 2030 when including (i) decarbonization of steam and electricity production and (ii) process optimizations to increase olefin yield through carbon capture and utilization and conversion of side-products
    corecore