9 research outputs found

    Structural investigations of N-methylformamide-water mixtures at various concentrations

    No full text
    Structural investigations of N-methylformamide-water mixtures (NMF-water) are performed at room temperature and atmospheric pressure for two water molar fractions x w = 0.66 and x w = 0.75 . This paper extends our recent study on the equimolar system. H-bond networks are preferentially formed between NMF and water molecules. Among a large variety of DFT optimized models, X-ray scattering data shows that the local order of each mixture is better described by a tetramer where one NMF molecule is connected to three water molecules. No self-association is observed in the considered systems. The effect of hydration is compared to the temperature and pressure effects in some hydrogen-bonded liquids

    H-bonding network in fully deuterated N-methylformamide-water mixtures as studied by neutron scattering. Complementarity to X-ray study

    No full text
    In complementarity with X-ray scattering and as extension of our previous publication, neutron scattering measurements are combined to DFT calculation to investigate the structural features of N-methylformamide-water mixtures (NMF-water) for three water molar fractions x w = 0.5 , 0.66 and x w = 0.75 . The recorded data at atmospheric pressure and room temperature are analyzed to yield the structure factor, the molecular form factor and the pair correlation function. Neutron investigations corroborate the X-ray ones and clearly show that liquid order in solutions is well accounted for by a tetramer. In this cluster, an NMF molecule is connected to three water molecules by one N-D ... O and two O-D ... O hydrogen bonds

    Variations in Tunisian borage essential oil profiles and their antioxidant activities during flowering

    No full text
    <div><p>This study was conducted to examine the chemical composition and antioxidant activity of the essential oils (EOs) of <i>Borago officinalis</i> stem during its flowering stage. The EO composition was characterised by high proportions of <i>E</i>,<i>E</i>-decadienal, the main compound of monoterpene hydrocarbon class, with values varying from 47.08% to 55.28% in two Tunisian regions. The region of Korba exhibited the highest scavenging activity (2.05 mg/mL) by comparison with Beja region. In all tests, the fructification stage showed the best antioxidant activity of all flowering stages.</p></div

    Phenological stage effect on phenolic composition and repellent potential of Mentha pulegium against Tribolium castaneum and Lasioderma serricorne

    No full text
    Objective: To elucidate for the first time the phenological stage effect on polyphenol, flavonoid and proanthocyanidin contents of pennyroyal (Mentha pulegium) as well as their antioxidant capacities and insecticidal potentials against Tribolium castaneum and Lasioderma serricorne. Methods: Crude methanol extracts from pennyroyal (Mentha pulegium) aerial parts were evaluated for their antiradical, reducing power activities and repellent potentials against selected coleopteran insects during different phenological stages. Results: Phenolic contents of pennyroyal aerial parts and their antioxidant effects were significantly dependent on maturity stage of the plant. The maximum of phenol production was reached during the full flowering stage. Apigenin was the major phenol in Mentha pulegium with an amount of 6.01 mg/g of dry vegetable matter during this period. Nevertheless, at fructification stage, the highest antioxidant activity was not related to high phenolic content. The repulsive effect of pennyroyal extract showed that Lasioderma serricorne was more susceptible to pennyroyal extract than Tribolium castaneum with corresponding median repellent dose values of 0.124 and 0.006 mg/mL respectively. Moreover, great differences in insect repulsion depending on extract concentrations, exposure time and developmental stage was observed. For the lowest concentration (0.125 mg/mL), the repellent effect against Tribolium reached its maximum (90%) during the fructification stage (after 24 h of exposure) while this repellent effect was 80% during the vegetative stage. Conclusions: Due to the strong insecticidal potential of pennyroyal extracts, this study highlights the therapeutic properties of this plant and encourages its use as a safer, environmental-friendly and efficient insecticide in food industry

    Chemical Composition and Antioxidant and Antimicrobial Activities of Wormwood (Artemisia absinthium L.) Essential Oils and Phenolics

    No full text
    The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability of A. absinthium L. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID) and by gas chromatography mass spectrometry (GC/MS). In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL). Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant. A. absinthium L. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities

    Structural investigations of N-methylformamide-water mixtures at various concentrations

    No full text
    Structural investigations of N-methylformamide-water mixtures (NMF-water) are performed at room temperature and atmospheric pressure for two water molar fractions x w = 0.66 and x w = 0.75 . This paper extends our recent study on the equimolar system. H-bond networks are preferentially formed between NMF and water molecules. Among a large variety of DFT optimized models, X-ray scattering data shows that the local order of each mixture is better described by a tetramer where one NMF molecule is connected to three water molecules. No self-association is observed in the considered systems. The effect of hydration is compared to the temperature and pressure effects in some hydrogen-bonded liquids
    corecore