14 research outputs found

    Influence of an Acute Exposure to a Moderate Real Altitude on Motoneuron Pool Excitability and Jumping Performance

    Get PDF
    The aim of the study was to test whether ascending to a moderate real altitude affects motoneuron pool excitability at rest, as expressed by a change in the H-reflex amplitude, and also to elucidate whether a possible alteration in the motoneuron pool excitability could be reflected in the execution of lower-body concentric explosive (squat jump; SJ) and fast eccentric-concentric (drop jump; DJ) muscle actions. Fifteen participants performed four experimental sessions that consisted of the combination of two real altitude conditions [low altitude (low altitude, 690 m), high altitude (higher altitude, 2,320 m)] and two testing procedures (H-reflex and vertical jumps). Participants were tested on each testing day at 8, 11, 14 and 17 h. The only significant difference (p < 0.05) detected for the H-reflex was the higher H-reflex response (25.6%) obtained 15 min after arrival at altitude compared to baseline measurement. In terms of motor behavior, DJ height was the only variable that showed a significant interaction between altitude conditions (LA and HA) and time of measurement (8, 11, 14 and 17 h) as DJ height increased more during successive measurements at HA compared to LA. The only significant difference between the LA and HA conditions was observed for DJ height at 17 h which was higher for the HA condition (p = 0.04, ES = 0.41). Although an increased H-reflex response was detected after a brief (15–20 min) exposure to real altitude, the effect on motorneuron pool excitability could not be confirmed since no significant changes in the H-reflex were detected when comparing LA and HA. On the other hand, the positive effect of altitude on DJ performance was accentuated after 6 h of exposure.Slovenian Research Agency - Slovenia P5-014

    Altitude‑induced effects on neuromuscular, metabolic and perceptual responses before, during and after a high‑intensity resistance training session

    Get PDF
    Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the Spanish Ministry of Science, Innovation and Universities under Grant (PGC2018-097388-B-I00-MCI/AEI/FEDER, UE), by the Andalusian FEDER Operational Program (B-CTS-374-UGR20) and FPU pre-doc- toral Grant (FPU18/00686) awarded to one of the authors (CB). The authors have no relevant financial or non-financial interests to disclose.Purpose We tested if an acute ascending to 2320 m above sea level (asl) affects corticospinal excitability (CSE) and intracortical inhibition (SICI) measured with transcranial magnetic stimulation (TMS) at rest, before, during and after a traditional hypertrophy-oriented resistance training (R-T) session. We also explored whether blood lactate concentration (BLa), ratings of perceived exertion (RPE), perceived muscular pain and total training volume differed when the R-T session was performed at hypoxia (H) or normoxia (N). Methods Twelve resistance-trained men performed eight sets of 10 repetitions at 70% of one repetition maximum of a bar biceps curl at N (SpO(2) = 98.0 +/- 0.9%) and H (at 2320 asl, SpO(2) = 94.0 +/- 1.9%) in random order. Before each session, a subjective well-being questionnaire, the resting motor threshold (rMT) and a single pulse recruitment curve were measured. Before, during and after the R-T session, BLa, RPE, muscle pain, CSE and SICI were measured. Results Before the R-T session only the rMT differed between H (- 5.3%) and N (ES = 0.38). RPE, muscle pain and BLa increased through the R-T session and were greater at H than N (12%, 54% and 15%, respectively) despite a similar training volume (1618 +/- 468 kg vs. 1638 +/- 509 kg). CSE was reduced during the R-T session (similar to 27%) but recovered ten minutes after, regardless of the environmental condition. SICI did not change after any R-T session. Conclusions The data suggest that acute exposure to moderate hypoxia slightly increased the excitability of the most excitable structures of the corticospinal tract but did not influence intracortical or corticospinal responses to a single R-T session.CRUE-CSICSpanish Ministry of Science, Innovation and Universities (PGC2018-097388-B-I00-MCI/AEI/FEDER, UE)Andalusian FEDER Operational Program (B-CTS-374-UGR20)FPU pre-doctoral (FPU18/00686

    Effectiveness of Core Stability Exercises and Recovery Myofascial Release Massage on Fatigue in Breast Cancer Survivors: A Randomized Controlled Clinical Trial

    Get PDF
    The purpose of the present paper was to evaluate the effects of an 8-week multimodal program focused on core stability exercises and recovery massage with DVD support for a 6-month period in physical and psychological outcomes in breast cancer survivors. A randomized controlled clinical trial was performed. Seventy-eight (n = 78) breast cancer survivors were assigned to experimental (core stability exercises plus massage-myofascial release) and control (usual health care) groups. The intervention period was 8 weeks. Mood state, fatigue, trunk curl endurance, and leg strength were determined at baseline, after the last treatment session, and at 6 months of followup. Immediately after treatment and at 6 months, fatigue, mood state, trunk curl endurance, and leg strength exhibited greater improvement within the experimental group compared to placebo group. This paper showed that a multimodal program focused on core stability exercises and massage reduced fatigue, tension, depression, and improved vigor and muscle strength after intervention and 6 months after discharge

    Effects of Power-Oriented Resistance Training During an Altitude Camp on Strength and Technical Performance of Elite Judokas

    Get PDF
    This study investigated the effect of a 3-week power-oriented resistance training program performed at moderate altitude on leg power output variables in a countermovement jump, a related judo technique (ippon-seoi-nage) and the relationship between them. Twenty-four elite male judokas were randomly assigned to a hypobaric hypoxia or normoxia group. Mechanical outputs from an incremental loaded countermovement jump test and the kinematic variables transferred to a dummy during an ippon-seoi-nage test (time to execution and movement accelerations) were assessed before, after, 1 and 2 weeks after training. Results indicated an increase in explosive leg capacity both at moderate altitude (2320 m.a.s.l.) and sea level. The hypoxia group showed additional benefits when compared to normoxia group for peak velocities with different percentages of the body weight, maximal theoretical velocity and jump height after the training period, and these additional benefits in jump height were maintained 2 weeks after training. The hypoxia group achieved a higher peak performance in peak velocity and jump height than normoxia group (peak velocity: 8.8 vs. 5.6%, jump height: 8.2 vs. 1.4%, respectively) and was achieved earlier in hypoxia (after training) than in normoxia (1 week after training). However, there was a detrimental effect for the hypoxia group on the times of execution and acceleration of the ippon-seoi-nage compared to the normoxia group. These results suggest that altitude training may induce faster and greater improvements in explosive leg extension capacity. Specific technique-oriented training should be included at altitude to prevent technique impairment.Spanish Ministry of Economy, Industry and Competitiveness DEP2015-64350-P BES-2016-07803

    Effect of a resistance exercise at acute moderate altitude on muscle health biomarkers

    Get PDF
    The intensification of the stress response during resistance training (RT) under hypoxia conditions could trigger unwanted effects that compromise muscle health and, therefore, the ability of the muscle to adapt to longer training periods. We examined the effect of acute moderate terrestrial hypoxia on metabolic, inflammation, antioxidant capacity and muscle atrophy biomarkers after a single RT session in a young male population. Twenty healthy volunteers allocated to the normoxia (N < 700 m asl) or moderate altitude (HH = 2320 m asl) group participated in this study. Before and throughout the 30 min following the RT session (3 × 10 reps, 90 s rest, 70% 1RM), venous blood samples were taken and analysed for circulating calcium, inorganic phosphate, cytokines (IL-6, IL-10 and TNF-α), total antioxidant capacity (TAC) and myostatin. Main results displayed a marked metabolic stress response after the RT in both conditions. A large to very large proportional increase in the adjusted to pre-exercise change of inflammatory and anti-inflammatory markers favoured HH (serum TNF-α [ES = 1.10; p = 0.024] and IL-10 [ES = 1.31; p = 0.009]). The exercise produced a similar moderate increment of myostatin in both groups, followed by a moderate non-significant reduction in HH throughout the recovery (ES =  − 0.72; p = 0.21). The RT slightly increased the antioxidant response regardless of the environmental condition. These results revealed no clear impact of RT under acute hypoxia on the metabolic, TAC and muscle atrophy biomarkers. However, a coordinated pro/anti-inflammatory response balances the potentiated effect of RT on systemic inflammatioUniversidad de Granada/CBUA This research was funded by the Spanish Ministry of ScienceInnovation and Universities (grant number PGC2018-097388-B-I00-MCI/AEI/FEDER, UE)FEDER/Junta de Andalucía-Ministry of Economic TransformationIndustry, Knowledge and Universities (grant number B-CTS-374-UGR20

    Predicting Vertical Jump Height from Bar Velocity

    Get PDF
    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine.This study was supported by grants awarded by the Spanish Ministry of Science and Innovation (DEP2012-35774) and Ministry of Education, Culture and Sport (Predoctoral Grant FPU12/00360)

    Effect of acute exposure to moderate altitude on kinematic variables of the ipponseoi- nage and its relationship with the countermovement jump in elite judokas

    Get PDF
    This study aimed to assess the effect of acute exposure to moderate altitude on kinematic variables of the ippon-seoi-nage and on the mechanical outputs of the countermovement jump (CMJ). Thirteen elite male judokas from the Spanish Judo Training Centre in Valencia (age: 21.54 ± 2.15 years) participated in the study. All of them performed an incremental CMJ test and an ippon-seoi-nage technique test before (N) and after the ascent to a moderate altitude of 2320 m above the sea level (H). A linear velocity transducer was attached to the bar to assess the mechanical outputs of each loaded CMJ at different percentages of their own body weight (25, 50, 75 and 100%). A wearable sensor was used to assess the kinematic variables (times, accelerations and angular velocities) transferred to a dummy during the technique test. The kinematic variables showed great individual reliability (CV = 8.46% in N; CV = 8.37% in H), which contrasted with low reliability observed when the whole group was considered. The smallest important CV ratio (>1.15) showed that H caused changes in the reliability of the kinematic variables, with some variables becoming more reliable and others losing the reliability they had in N. H also caused small increments in peak velocity across all loads tested in the CMJ (+3.67%; P<0.05). In contrast, no changes in the kinematic variables were verified.This study was funded by the Spanish Ministry of Economy and Competitiveness (DEP2015-64350-P MINECO/FEDER), and by a FPI pre-doctoral grant (BES-2016- 078035) awarded to one of the authors (FA)

    Hormonal and Inflammatory Responses to Hypertrophy-Oriented Resistance Training at Acute Moderate Altitude

    Get PDF
    This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant number PGC2018-097388-B-I00, by the Andalusian FEDER Operational Program, grant number A-SEJ-246-UGR18 and FPU pre-doctoral, grant number FPU18/00686 awarded to one of the authors.The authors thank the High Performance Center of Sierra Nevada, Spain and all the participants who volunteered for this investigation. The authors also thank Dymatize Europe for supplying the meal replacement supplements used in this study.This study investigated the effect of a traditional hypertrophy-oriented resistance training (R-T) session at acute terrestrial hypoxia on inflammatory, hormonal, and the expression of miR-378 responses associated with muscular gains. In a counterbalanced fashion, 13 resistance trained males completed a hypertrophic R-T session at both moderate-altitude (H; 2320 m asl) and under normoxic conditions (N; <700 m asl). Venous blood samples were taken before and throughout the 30 min post-exercise period for determination of cytokines (IL6, IL10, TNF alpha), hormones (growth hormone [GH], cortisol [C], testosterone), and miR-378. Both exercise conditions stimulated GH and C release, while miR-378, testosterone, and inflammatory responses remained near basal conditions. At H, the R-T session produced a moderate to large but nonsignificant increase in the absolute peak values of the studied cytokines. miR-378 revealed a moderate association with GH (r = 0.65; p = 0.026 and r = -0.59; p = 0.051 in N and H, respectively) and C (r = 0.61; p = 0.035 and r = 0.75; p = 0.005 in N and H, respectively). The results suggest that a R-T session at H does not differentially affect the hormonal, inflammatory, and miR-378 responses compared to N. However, the standardized mean difference detected values in the cytokines suggest an intensification of the inflammatory response in H that should be further investigated.Spanish Ministry of Science, Innovation and Universities PGC2018-097388-B-I00Andalusian FEDER Operational Program A-SEJ-246-UGR18FPU pre-doctoral FPU18/0068
    corecore