45 research outputs found

    The CMB Bispectrum

    Full text link
    We use a separable mode expansion estimator with WMAP data to estimate the bispectrum for all the primary families of non-Gaussian models. We review the late-time mode expansion estimator methodology which can be applied to any non-separable primordial and CMB bispectrum model, and we demonstrate how the method can be used to reconstruct the CMB bispectrum from an observational map. We extend the previous validation of the general estimator using local map simulations. We apply the estimator to the coadded WMAP 5-year data, reconstructing the WMAP bispectrum using l<500l<500 multipoles and n=31n=31 orthonormal 3D eigenmodes. We constrain all popular nearly scale-invariant models, ensuring that the theoretical bispectrum is well-described by a convergent mode expansion. Constraints from the local model \fnl=54.4\pm 29.4 and the equilateral model \fnl=143.5\pm 151.2 (\Fnl = 25.1\pm 26.4) are consistent with previously published results. (Here, we use a nonlinearity parameter \Fnl normalised to the local case, to allow more direct comparison between different models.) Notable new constraints from our method include those for the constant model \Fnl = 35.1 \pm 27.4 , the flattened model \Fnl = 35.4\pm 29.2, and warm inflation \Fnl = 10.3\pm 27.2. We investigate feature models surveying a wide parameter range in both the scale and phase, and we find no significant evidence of non-Gaussianity in the models surveyed. We propose a measure \barFnl for the total integrated bispectrum and find that the measured value is consistent with the null hypothesis that CMB anisotropies obey Gaussian statistics. We argue that this general bispectrum survey with the WMAP data represents the best evidence for Gaussianity to date and we discuss future prospects, notably from the Planck satellite

    The real shape of non-Gaussianities

    Full text link
    I review what bispectra and trispectra look like in real space, in terms of the sign of particular shaped triangles and tetrahedrons. Having an equilateral density bispectrum of positive sign corresponds to having concentrated overdensities surrounded by larger weaker underdensities. In 3D these are concentrated density filaments, as expected in large-scale structure. As the shape changes from equilateral to flattened the concentrated overdensities flatten into lines (3D planes). I then focus on squeezed bispectra, which can be thought of as correlations of changes in small-scale power with large-scale fields, and discuss the general non-perturbative form of the squeezed bispectrum and its angular dependence. A general trispectrum has tetrahedral form and I show examples of what this can look like in real space. Squeezed trispectra are of particular interest and come in two forms, corresponding to large-scale variance of small-scale power, and correlated modulations of an equilateral-form bispectrum. Flattened trispectra can be produced by line-like features in 2D, for example from cosmic strings, and randomly located features also give a non-Gaussian signal. There are relationships between the squeezed types of non-Gaussianity, and also a useful interpretation in terms of statistical anisotropy. I discuss the various possible physical origins of cosmological non-Gaussianities, both in terms of primordial perturbations and late-time dynamical and geometric effects.Comment: 19 pages, 12 figures; Clarification regarding g_NL/two-leg squeezed shape, minor edits, reference updates (supersedes published version

    Constraining the WMAP9 bispectrum and trispectrum with needlets

    Get PDF
    We develop a needlet approach to estimate the amplitude of general (including non-separable) bispectra and trispectra in the cosmic microwave background, and apply this to the WMAP 9-year data. We obtain estimates for the `orthogonal' bispectrum mode, yielding results which are consistent with the WMAP 7-year data. We do not observe the frequency-dependence suggested by the WMAP team's analysis of the 9-year data. We present 1-σ\sigma constraints on the `local' trispectrum shape \gnl/10^5= -4.1\pm 2.3, the `c1c1' equilateral model \gnl^{c_1}/10^6= -0.8\pm 2.9, and the constant model \gnl^{\rm{const}}/10^6= -0.2\pm 1.8, together with a 95%95\% confidence-level upper bound on the multifield local parameter \taunl<22000. We estimate the bias on these parameters produced by point sources. The techniques developed in this paper should prove useful for other datasets such as Planck.Comment: 21 pages - matches published versio

    BINGO: A code for the efficient computation of the scalar bi-spectrum

    Full text link
    We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL} to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed, extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO code is available online at http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Feeding your Inflaton: Non-Gaussian Signatures of Interaction Structure

    Full text link
    Primordial non-Gaussianity is generated by interactions of the inflaton field, either self-interactions or couplings to other sectors. These two physically different mechanisms can lead to nearly indistinguishable bispectra of the equilateral type, but generate distinct patterns in the relative scaling of higher order moments. We illustrate these classes in a simple effective field theory framework where the flatness of the inflaton potential is protected by a softly broken shift symmetry. Since the distinctive difference between the two classes of interactions is the scaling of the moments, we investigate the implications for observables that depend on the series of moments. We obtain analytic expressions for the Minkowski functionals and the halo mass function for an arbitrary structure of moments, and use these to demonstrate how different classes of interactions might be distinguished observationally. Our analysis casts light on a number of theoretical issues, in particular we clarify the difference between the physics that keeps the distribution of fluctuations nearly Gaussian, and the physics that keeps the calculation under control.Comment: 33 pages (plus appendices), 3 figures. V2: references added, some minor clarifications. Accepted for publication in JCA

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
    corecore