2,350 research outputs found

    Individual and Social Ontologies of the Self: Analyzing the Spectrums of Selfhood

    Get PDF
    I propose to engage in a survey and critical evaluation of various fundamental understandings of selfhood. I will organize my analysis along two ontological dimensions. The first considers the difference between individualist and communalist understandings of the self. The second considers the difference between essentialist and non-essentialist (or socially constructed) understandings of the self. My intention is to argue for a view that is conducive to human flourishing by providing greater understanding of the self in relation to certain aspects of one’s existence through which one can create meaning, and live a life directed towards the good as an individual and a member of a community

    The Primeval Populations of the Ultra-Faint Dwarf Galaxies

    Get PDF
    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.Comment: Accepted for publication in The Astrophysical Journal Letters. Latex, 5 pages, 2 color figures, 1 tabl

    A review of statistical models used to characterize species-habitat associations with animal movement data

    Full text link
    Understanding species-habitat associations is fundamental to ecological sciences and for species conservation. Consequently, various statistical approaches have been designed to infer species-habitat associations. Due to their conceptual and mathematical differences, these methods can yield contrasting results. In this paper, we describe and compare commonly used statistical models that relate animal movement data to environmental data. Specifically, we examined selection functions which include resource selection function (RSF) and step-selection function (SSF), as well as hidden Markov models (HMMs) and related methods such as state-space models. We demonstrate differences in assumptions of each method while highlighting advantages and limitations. Additionally, we provide guidance on selecting the most appropriate statistical method based on research objectives and intended inference. To demonstrate the varying ecological insights derived from each statistical model, we apply them to the movement track of a single ringed seal in a case study. For example, the RSF indicated selection of areas with high prey diversity, whereas the SSFs indicated no discernable relationship with prey diversity. Furthermore, the HMM reveals variable associations with prey diversity across different behaviors. Notably, the three models identified different important areas. This case study highlights the critical significance of selecting the appropriate model to identify species-habitat relationships and specific areas of importance. Our comprehensive review provides the foundational information required for making informed decisions when choosing the most suitable statistical methods to address specific questions, such as identifying expansive corridors or protected zones, understanding movement patterns, or studying behaviours

    The ACS LCID project. X. The Star Formation History of IC 1613: Revisiting the Over-Cooling Problem

    Full text link
    We present an analysis of the star formation history (SFH) of a field near the half light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ~1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions which are too low today (the "over-cooling problem"). The depth of the present photometry of IC 1613 shows that, at a resolution of ~1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.Comment: 13 pages, 12 figures, accepted for publication in the Ap

    The Hubble Space Telescope Survey of M31 Satellite Galaxies. III. Calibrating the Horizontal Branch as an Age Indicator for Nearby Galaxies

    Full text link
    We present a new method for measuring the mean age of old/intermediate stellar populations in resolved, metal-poor (⟨[Fe/H]⟩≲−1.5\rm \langle[Fe/H]\rangle \lesssim -1.5) galaxies using only the morphology of the horizontal branch (HB) and an estimate of the average metallicity. We calculate the ratio of blue-to-red HB stars and the mass-weighted mean ages of 27 M31 satellite galaxies that have star formation histories (SFHs) measured from Hubble Space Telescope-based color-magnitude diagrams (CMDs) that include the oldest Main Sequence Turn-off (MSTO) ages. We find a strong correlation between mean age, metallicity, and HB morphology, for stellar populations older than ∼6\sim6~Gyr. The correlation allows us to predict a galaxy's mean age from its HB morphology to a precision of ≲1\lesssim 1~Gyr. We validate our method by recovering the correct ages of Local Group galaxies that have robust MSTO-based ages and are not in our calibration sample. We also use our technique to measure the mean ages of isolated field galaxies KKR25 (11.21−0.65+0.7011.21^{+0.70}_{-0.65}~Gyr) and VV124 (11.03−0.68+0.7311.03^{+0.73}_{-0.68}~Gyr), which indicate that their main star formation episodes may have lasted several Gyr and support the picture that they achieved their early-type characteristics (e.g., low gas content, low star formation activity) in isolation and not through environment. Because the HB is ∼80×\sim80\times brighter than the oldest MSTO, our method can provide precise characteristic ages of predominantly old galaxies at distances ∼9\sim 9 times farther. We provide our calibrations in commonly used HST/ACS filters.Comment: 21 pages, 13 figures, 5 tables, submitted to Ap
    • …
    corecore