6 research outputs found

    Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    Get PDF

    The Electronic Structure of Mixed Self-Assembled Monolayers

    No full text
    The electronic structure of mixed self-assembled monolayers (SAMs) on Au(111) surfaces is modeled using slab-type density-functional theory calculations. The studied molecules have a dipolar character induced by polar and electron donating or accepting tail-group substituents. The resulting electronic structure of mixed layers is found to differ qualitatively from a simple superposition of those of the respective pure layers. Specifically, the positions of the frontier electronic states are shifted relative to the metal Fermi level, with the sign and magnitude of that shift depending on the dipole moment of the molecules and the mixing ratio in the film. This appears counterintuitive considering previous investigations, in which it has been shown that, for densely packed layers, tail-group substituents have no impact on the interfacial energy-level alignment. The seeming contradiction can be lifted by considering the local electrostatic interactions within the films in both mixed and homogeneous monolayers. Beyond that, we show that mixed SAMs provide an efficient tool for continuously tuning substrate work functions over a range that far exceeds that accessible by merely changing the coverage of homogeneous layers, with the net effect depending linearly on the mixing ratio in agreement with recent experimental findings

    Understanding the Electronic Structure of Metal/SAM/Organic−Semiconductor Heterojunctions

    No full text
    Computational modeling is used to describe the mechanisms governing energy level alignment between an organic semiconductor (OSC) and a metal covered by various self-assembled monolayers (SAMs). In particular, we address the question to what extent and under what circumstances SAM-induced work-function modifications lead to an actual change of the barriers for electron and hole injection from the metal into the OSC layer. Depending on the nature of the SAM, we observe clear transitions between Fermi level pinning and vacuum-level alignment regimes. Surprisingly, although in most cases the pinning occurs only when the metal is present, it is not related to charge transfer between the electrode and the organic layer. Instead, charge rearrangements at the interface between the SAM and the OSC are observed, accompanied by a polarization of the SAM

    Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    No full text
    The electronic structure of terpyrimidinethiols is investigated by means of density-functional theory calculations for isolated molecules and monolayers. In the transition from molecule to self-assembled monolayer (SAM), we observe that the band gap is substantially reduced, frontier states increasingly localize on opposite sides of the SAM, and this polarization in several instances is in the direction opposite to the polarization of the overall charge density. This behavior can be analyzed by analogy to inorganic semiconductor quantum-wells, which, as the SAMs studied here, can be regarded as semiperiodic systems. There, similar observations are made under the influence of a, typically external, electric field and are known as the quantum-confined Stark effect. Without any external perturbation, in oligopyrimidine SAMs one encounters an energy gradient that is generated by the dipole moments of the pyrimidine repeat units. It is particularly strong, reaching values of about 1.6 eV/nm, which corresponds to a substantial electric field of 1.6 × 10<sup>7</sup> V/cm. Close-lying σ- and π-states turn out to be a particular complication for a reliable description of the present systems, as their order is influenced not only by the docking groups and bonding to the metal, but also by the chosen computational approach. In the latter context we demonstrate that deliberately picking a hybrid functional allows avoiding pitfalls due to the infamous self-interaction error. Our results show that when aiming to build a monolayer with a specific electronic structure one can not only resort to the traditional technique of modifying the molecular structure of the constituents, but also try to exploit collective electronic effects
    corecore