43 research outputs found
Collagen waste as secondary industrial raw material
Use of collagen in food production is limited by its low nutritive value and deficient essential amino acids. Irrespective of gelatine and glue manufactured by boiling refined native collagen, industrial processing of collagen is connected with production of a considerable amount of difficultly utilizable protein waste. In the phase of refining collagen raw material, hydrolysates of keratin and accompanying proteins (albumins, globulins) that are isolated with ease go away; their following usage comes up against similar problems as with keratin. Use of collagen waste as of secondary industrial raw material is usually complicated by an excessive density of irreversible crosslinks introduced for stabilizing against chemical and microbial effects. The first stage in processing such waste is hydrolysis that is partially alkaline, acid, but above all enzymatic, and interesting for its low energy demands. Obtained collagen hydrolysates behave like gelatine, however, with a view to their molecular weight being 5-10 times lower, they exhibit higher hydrophility and formation of their gels requires higher dry substance concentration. Sole collagen hydrolysates proved themselves well as a component in urea-formaldehyde resins reducing formaldehyde emissions by their cured films.The same as polyamides, they form considerably stable networks when crosslinking epoxide oligomers; their potential disintegration through microbial procedures is advantageous when removing protective films prior to recycling plastic automobile or aircraft parts on termination of their life. Collagen hydrolysate, crosslinked with polymeric dialdehydes (e.g. dialdehyde starch) results in biodegradable or even edible packaging materials which, under suitable conditions, may be processed by technology of dipping, casting and drying as well as by procedures typical for processing synthetic polymers (extrusion and compression molding). © 2009 by Nova Science Publishers, Inc
Collagen Waste as Secondary Industrial Raw Material
Use of collagen in food production is limited by its low nutritive value and deficient essential amino acids. Irrespective of gelatine and glue manufactured by boiling refined native collagen, industrial processing of collagen is connected with production of a considerable amount of difficultly utilizable protein waste. In the phase of refining collagen raw material, hydrolysates of keratin and accompanying proteins (albumins, globulins) that are isolated with ease go away; their following usage comes up against similar problems as with keratin. Use of collagen waste as of secondary industrial raw material is usually complicated by an excessive density of irreversible crosslinks introduced for stabilizing against chemical and microbial effects. The first stage in processing such waste is hydrolysis that is partially alkaline, acid, but above all enzymatic, and interesting for its low energy demands. Obtained collagen hydrolysates behave like gelatine, however, with a view to their molecular weight beiZ(MSM7088352102
Modifyining products of enzymatic breakdown of chrome-tanned leather wastes with glutaraldehyde
Hydrolysates of chrome -tanned leather waste react eith glutaraldehyde to produce thermo-reversible/irreversibale gels, both of them being applicable in currently widespread emcapsulation techniques
Heat-treated biodegradable films and foils of collagen hydrolysate crosslinked with dialdehyde starch
Gely kolagenních hydrolysátů (H) zesíťovaných dialdehydem škrobu (DAS) se vyznačují silnou tendencí ke stárnutí, což může znamenat jisté problémy při jejich zpracování na biodegradabilní obalové materiály. Připraví-li se filmy či folie litím, které se poté exponují po určitou dobu (1-4 h) při 105 oC, jest možné eliminovat jejich stárnutí. Rozpustnost tepelně-exponovaných filmů ve vodě jest zachována, nicméně jest závislá na době teplené exposice a na množství DAS ve filmu; doba rozpadu filmu se prodlužuje z 1-1,5 h na 1.300 h (přibližně 54 dnů). To je pravděpodobně způsobeno funkčními skupina, které původně byly blokovány sorbovanou vodou, které se uvolnily a přispěly ke tvorbě mezi-řetězcových H-vazeb. Pokles teploty skelného přechodu takto připravených filmů se mění v závislosti na obsahu sorbované vody v intervalu 90,2-189 oC.Gels of collagen hydrolysate (H) cross-linked with dialdehyde starch (DAS) are marked by a strong tendency to aging, which means a certain problem during their processing into biodegradable packaging materials. Applying casting technology, and drying these materials by heating air-dry films and foils for a limited time (1-4 hours) at 105 oC, may eliminate the aging problem. Solubility of heat-treated films in an aqueous environment remains preserved, but depending on how long this temperature acts and on DAS content in the filmtime of film disintegration prolongs from 1-1.5 hours to 1.300 hours (about 54 days). It is probably caused by the functional groups initially blocked by sorbed water, which get released to produce hydrogen inter-chain cross-links. The decrease in glass transition temperature of such films varies with content of water sorbed in films in an interval of 90.2-189 oC
Hydrogels of collagen hydrolysate cross-linked with dialdehyde starch
Zpracování hydrogelů kolagenního hydrolysátu (H) zesíťovaného dialdehydem škrobu (DAS) máčením či litím na biodegradabilní materiály pro různé aplikace, je komplikováno jejich význačnou tendencí ke stárnutí. Po 1 hodinovém působení při teplotě 60?90 oC se množství sorbované vody v hydrogelu sníží o přibližně 12 %; závislost rozsahu tohoto poklesu na teplotě (v uvedeném intervalu) nebyla pozorována. Vliv tepelného působení na dobu desintegrace gelu ve vodě při pH 4,8?7,4 nebyl zaznamenán; stejně tomu bylo při přechodu gel ? sol. Lze tedy konstatovat, že stárnutí gelu je způsobeno zvyšujícím se rozsahem tvorby sítě meziřetězcovými H-můstky na čase. Uvedený teplotní interval je dostačující pro zpracování hydrogelů technologiemi běžně používanými při zpracování synthetických plastů (lisování, vstřikování).Processing hydrogels of collagen hydrolysate (H) cross-linked with dialdehyde starch (DAS) by dipping or casting into biodegradable materials for various applications, is complicated by their marked tendency to aging. One-hour action by temperatures at 60?90 oC reduces sorbed water content in hydrogels by approx. 12 %dependence of the extent of this reduction on temperature (within the mentioned range) was not detected. Effect of thermal action on duration of their disintegration in an aqueous medium and on its pH (within limits 4.8?7.4) was not found either, neither on their gel ? sol transition temperature. This supports the view that aging is caused by time-dependent increasing network density of inter-chain hydrogen cross-links. The given temperature interval is satisfactory for processing hydrogels through technologies currently used in processing synthetic plastics (compression molding, injection molding)
Isolation of eleastin and collagen polypeptides from long cattle tendons as raw material for the cosmetic industry
Long cattle tendons were enzymatically disposed of lipoid substances.Collagenous hydrolysate was obtained through hydrolysis by commercial protease unde mild conditions, followed by elastin hydrolysis by commercila endopeptidase unde motre drastic conditions. Purity of hydrolysates was controlled
Biodegradable packing materials from hydrolysates of collagen waste proteins
Hydrolysáty získané enzymovou hydrolýsou z odpadních kolagenních proteinů (H) z výrob masného a kožedělného průmyslu o střední molekulové hmotnosti 20 až 30 kDa reakcí s dialdehydem škrobu (DAS) produkují hydrogelů, jež je možné použít jako biodegradabilní (a potenciálně jedlé) obalové materiály v potravinářství, v kosmetice a ve farmacii. Thermo-reversibilita hydrogelů je závislá na koncentraci hydrolysátu (H) a síťovadla (DAS) v reakční směsi. Při koncentraci hydrolysátu 25 až 30 % (w/w) a dialdehydu škrobu 15 až 20 % (vztaženo na hmotnost hydrolysátu) vznikají thermo-reversibilní gely, které mohou být zpracovány na obalové materiály technikami podobnými při zpracování měkkých želatinových kapslí (SGC). Při překročení limitu 20 % přídavku DAS se připraví hydrogelů, které jsou částečně thermo-reversibilní a dalším zvyšováním přídavku DAS přechází gely na thermo-irreversibilní, při jejichž zpracování na obalové materiály je nutné využít jiných technik.Enzymatic hydrolysates of waste collagen proteins (H), from current industrial manufacture (leather, edible meat product casings, etc.) of mean molecular mass 20?30 kDa by a reaction with dialdehyde starch (DAS), produces hydrogels applicable as biodegradable (or even edible) packaging materials for food, cosmetic and pharmaceutical products. Thermo-reversibility of prepared hydrogels is given by concentrations of H and DAS in a reaction mixture. At concentrations of H 25?30% (w/w) and that of DAS 15?20% (related to weight of hydrolysate), thermo-reversible hydrogels arise, which can be processed into packaging materials by a technique similar to that of soft gelatin capsules (SGC). Exceeding the limit of 20% DAS leads to hydrogels that are thermo-reversible only in part, a further increase in DAS concentration then leads to thermo-irreversible gels whose processing into biodegradable packaging materials necessitates employment of other procedures
Collageneous hydrolysates from untraditional sources of proteins
Sufficiently pure collagenous hydrolysates, suitable for application in skin and hair care cosmetics, have been prepared through biotechnological methods with the use of commercially available enzymatic preparations from short cattle tendons (musculus extensor communis, musculus flexor digitorum, musculus flexor digitorum profundis). These hydrolysates contain neither lipoid nor aminosaccharide components, content of primary amino groups reaches around 1.1 mmol g-1 and the average molecular weight of the resulting collagenous hydrolysates does not exceed 2000 g mol-1 (2.0 kDa). Short cattle tendons represent a relatively pure and easily available source of collagens and are, despite their generally known low nutritional value, used only as a feeding mixture component
Curing urea-formaldehyde adhesives with hydrolysates of chrome-tanned leather waste from leather production
Non-isothermal thermogravimetry was applied to study the condensation kinetics of dimethylol-urea (DMU) as a model substance for methylol oligomers of urea in the presence, or absence, of an acid curing agent (phthalic acid), and of blends of DMU with urea and with the hydrolysate of chrome-tanned leather waste. Kinetics of the formation of oxymethylene and methylene bonds were evaluated, using the Arrhenius equation to obtain the parameters. Addition of a mass fraction of 0.05 H to DMU reduces the rate of formation of unstable oxymethylene cross-links in favour of more stable methylene bonds by 20-30%. Acid curing agents accelerate the rate of formation of both types of cross-links, but at the same time markedly affect transformation of oxymethylene cross-links to methylene cross-links. Reducing the content of oxymethylene cross-links in cured aminoplast adhesive films, to control their instability, may lower the levels of formaldehyde emissions by cured aminoplast-type films. (C) 2004 Elsevier Ltd. All rights reserved
Curing Adhesives of Urea-Formaldehyde Type with Collagen Hydrolysates of Chrome-Tanned Leather Waste
Kondensace dimethylol močoviny (DMU) ve směsi s močovinou (U) a kolagenním hydrolysátem v tuhé fázi ,bez přídavku kyselého tužidla byla studována DSC a TG technikou v teplotním intervalu do 220oC. Z obou technik se použití TG ukázalo výhodnější. Zatím co směs DMU+U vede k vzniku methylen oxidových (-CH2-O-CH2-) a methylenových (-CH2-) můstků přibližně v poměru 1:1, nahrazení močoviny ve směsi kolagenním hydrolysátem chromočiněného usňového odpadu posunuje tento pomnr k hodnotě cca 2:1 ve prospěch stabilnějších methylenových můstků. Methylen-oxidové můstky jsou považovány za hlavní zdroj emisí formaldehydu vytvrzenými močovino- formaldehydovými adhesivy a přídavek kolagenního hydrolysátu může tedy značně vylepšit ekologické aspekty takových adhesiv.Condensatrion of dimethylol-urea ( DMU) mixed with urea (U) and collagen hydrolysate (H) obtained through enzymatic hydrolysis of chrome- tanned leather waste wihtout added curing agents in the solid phase was studied through DSC and TG techniques in tempoerature interval up to 220oC. Among techniques used TG proved to be more useful. While the DMU + U mixture produced methylene- oxide ( -CH2-O-CH2- ) and methylene ( -CH2-) bridges at a ratio approx. 1:1, urea substituted for collagen hydrolysate increased the proportion of more stable methylene bridges to metylene-oxide bridges to a ration of approx. 2:1. methylene oxide bridges are considered to be the main potential sources of formaldehyde emissions from cured urea- formaldehyde type adhesives and thus the use of collagen hydrolysate in preparation of urea-formaldehyde type is a suitable way how to make such adhesives more environmental friendly