1,338 research outputs found

    First beam test of a Cherenkov detector prototype for a TOF measurements at the Super-FRS

    Get PDF

    Two-Dimensional Copolymers and Exact Conformal Multifractality

    Full text link
    We consider in two dimensions the most general star-shaped copolymer, mixing random (RW) or self-avoiding walks (SAW) with specific interactions thereof. Its exact bulk or boundary conformal scaling dimensions in the plane are all derived from an algebraic structure existing on a random lattice (2D quantum gravity). The multifractal dimensions of the harmonic measure of a 2D RW or SAW are conformal dimensions of certain star copolymers, here calculated exactly as non rational algebraic numbers. The associated multifractal function f(alpha) are found to be identical for a random walk or a SAW in 2D. These are the first examples of exact conformal multifractality in two dimensions.Comment: 4 pages, 2 figures, revtex, to appear in Phys. Rev. Lett., January 199

    Level-crossing spectroscopy of the 7, 9, and 10D_5/2 states of 133Cs and validation of relativistic many-body calculations of the polarizabilities and hyperfine constants

    Get PDF
    We present an experimental and theoretical investigation of the polarizabilities and hyperfine constants of D_J states in 133Cs for J=3/2 and J=5/2. New experimental values for the hyperfine constant A are obtained from level-crossing signals of the (7,9,10)D_5/2 states of 133Cs and precise calculations of the tensor polarizabilities alpha_2. The results of relativistic many-body calculations for scalar and tensor polarizabilities of the (5-10)D_3/2 and (5-10)D_5/2 states are presented and compared with measured values from the literature. Calculated values of the hyperfine constants A for these states are also presented and checked for consistency with experimental values.Comment: 12 pages, revtex4, 11 figure file

    Fourier transform spectroscopy and coupled-channel deperturbation treatment of the A1Sigma+ ~ b3Pi complex of KCs molecule

    Full text link
    The laser induced fluorescence (LIF) spectra A1Sigma ~ b3Pi --> X1Sigma+ of KCs dimer were recorded in near infrared region by Fourier Transform Spectrometer with a resolution of 0.03 cm-1. Overall more than 200 LIF spectra were rotationally assigned to 39K133Cs and 41K133Cs isotopomers yielding with the uncertainty of 0.003-0.01 cm-1 more than 3400 rovibronic term values of the strongly mixed singlet A1Sigma+ and triplet b3Pi states. Experimental data massive starts from the lowest vibrational level v_A=0 of the singlet and nonuniformly cover the energy range from 10040 to 13250 cm-1 with rotational quantum numbers J from 7 to 225. Besides of the dominating regular A1Sigma+ ~ b3P Omega=0 interactions the weak and local heterogenous A1S+ ~ b3P Omega=1 perturbations have been discovered and analyzed. Coupled-channel deperturbation analysis of the experimental 39K133Cs e-parity termvalues of the A1S+ ~ b3P complex was accomplished in the framework of the phenomenological 4 x 4 Hamiltonian accounting implicitly for regular interactions with the remote states manifold. The resulting diabatic potential energy curves of the interacting states and relevant spin-orbit coupling matrix elements defined analytically by Expanded Morse Oscillators model reproduce 95% of experimental data field of the 39K133Cs isotopomer with a standard deviation of 0.004 cm-1 which is consistent with the uncertainty of the experiment. Reliability of the derived parameters was additionally confirmed by a good agreement between the predicted and experimental termvalues of 41K133Cs isotopomer. Calculated intensity distributions in the A ~ b --> X LIF progressions are also consistent with their experimental counterparts.Comment: 17 pages, 14 figure

    Covariant Quantization of d=4 Brink-Schwarz Superparticle with Lorentz Harmonics

    Full text link
    Covariant first and second quantization of the free d=4 massless superparticle are implemented with the introduction of purely gauge auxiliary spinor Lorentz harmonics. It is shown that the general solution of the condition of maslessness is a sum of two independent chiral superfields with each of them corresponding to finite superspin. A translationally covariant, in general bijective correspondence between harmonic and massless superfields is constructed. By calculation of the commutation function it is shown that in the considered approach only harmonic fields with correct connection between spin and statistics and with integer negative homogeneity index satisfy the microcausality condition. It is emphasized that harmonic fields that arise are reducible at integer points. The index spinor technique is used to describe infinite-component fields of finite spin; the equations of motion of such fields are obtained, and for them Weinberg's theorem on the connection between massless helicity particles and the type of nongauge field that describes them is generalized.Comment: V2: 1 + 26 pages, published versio

    Pseudo--epsilon expansion of six--loop renormalization group functions of an anisotropic cubic model

    Full text link
    Six-loop massive scheme renormalization group functions of a d=3-dimensional cubic model (J.M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B vol. 61, 15136 (2000)) are reconsidered by means of the pseudo-epsilon expansion. The marginal order parameter components number N_c=2.862(5) as well as critical exponents of the cubic model are obtained. Our estimate N_c<3 leads in particular to the conclusion that all ferromagnetic cubic crystals with three easy axis should undergo a first order phase transition.Comment: 8 page

    Book review: Gerald D. Feldman, Austrian banks in the period of National Socialism

    Get PDF
    Even though Germany, Austria, and Hungary experienced a major financial crisis simultaneously in 1931, of the three, only Germany's and Austria's episodes have been investigated in depth. This article offers a thorough assessment of the missing piece. It finds that, just like Germany, Hungary also experienced a twin crisis. The primary reason for the weakness of the financial sector was banks’ excessive exposure to agricultural loans. The fragility of the currency was the result of an early balance-of-payments crisis in 1928/9. The vulnerability of the banking and monetary systems culminated in a twin crisis in 1931

    Supersymmetric string model with 30 kappa--symmetries in an extended D=11 superspace and 30/ 32 BPS states

    Full text link
    A supersymmetric string model in the D=11 superspace maximally extended by antisymmetric tensor bosonic coordinates, ÎŁ(528∣32)\Sigma^{(528|32)}, is proposed. It possesses 30 Îș\kappa-symmetries and 32 target space supersymmetries. The usual preserved supersymmetry-Îș\kappa-symmetry correspondence suggests that it describes the excitations of a BPS state preserving all but two supersymmetries. The model can also be formulated in any ÎŁ(n(n+1)2∣n)\Sigma^{({n(n+1)\over 2}|n)} superspace, n=32 corresponding to D=11. It may also be treated as a `higher--spin generalization' of the usual Green--Schwarz superstring. Although the global symmetry of the model is a generalization of the super--Poincar\'e group, ÎŁ(n(n+1)2∣n)×⊃Sp(n){\Sigma}^{({n(n+1)\over 2}|n)}\times\supset Sp(n), it may be formulated in terms of constrained OSp(2n|1) orthosymplectic supertwistors. We work out this supertwistor realization and its Hamiltonian dynamics. We also give the supersymmetric p-brane generalization of the model. In particular, the ÎŁ(528∣32)\Sigma^{(528|32)} supersymmetric membrane model describes excitations of a 30/32 BPS state, as the ÎŁ(528∣32)\Sigma^{(528|32)} supersymmetric string does, while the supersymmetric 3-brane and 5-brane correspond, respectively, to 28/32 and 24/32 BPS states.Comment: 23 pages, RevTex4. V2: minor corrections in title and terminology, some references and comments adde

    Scaling in DNA unzipping models: denaturated loops and end-segments as branches of a block copolymer network

    Full text link
    For a model of DNA denaturation, exponents describing the distributions of denaturated loops and unzipped end-segments are determined by exact enumeration and by Monte Carlo simulations in two and three dimensions. The loop distributions are consistent with first order thermal denaturation in both cases. Results for end-segments show a coexistence of two distinct power laws in the relative distributions, which is not foreseen by a recent approach in which DNA is treated as a homogeneous network of linear polymer segments. This unexpected feature, and the discrepancies with such an approach, are explained in terms of a refined scaling picture in which a precise distinction is made between network branches representing single stranded and effective double stranded segments.Comment: 8 pages, 8 figure

    Super Multi-Instantons in Conformal Chiral Superspace

    Full text link
    We reformulate self-dual supersymmetric theories directly in conformal chiral superspace, where superconformal invariance is manifest. The superspace can be interpreted as the generalization of the usual Atiyah-Drinfel'd-Hitchin-Manin twistors (the quaternionic projective line), the real projective light-cone in six dimensions, or harmonic superspace, but can be reduced immediately to four-dimensional chiral superspace. As an example, we give the 't Hooft and ADHM multi-instanton constructions for self-dual super Yang-Mills theory. In both cases, all the parameters are represented as a single, irreducible, constant tensor.Comment: 21 pg., uuencoded compressed postscript file (twist.ps.Z.uu), other formats (.dvi, .ps, .ps.Z, 8-bit .tex) available at http://insti.physics.sunysb.edu/~siegel/preprints or at ftp://max.physics.sunysb.edu/preprints/siege
    • 

    corecore