10 research outputs found

    Patient-Derived Organoids for Precision Cancer Immunotherapy

    Get PDF
    Cancer immunotherapy has revolutionized the way tumors are treated. Nevertheless, efficient and robust testing platforms are still missing, including clinically relevant human ex vivo tumor assays that allow pretreatment testing of cancer therapies and selection of the most efficient and safe therapy for a specific patient. In the case of immunotherapy, this testing platform would require not only cancer cells, but also the tumor microenvironment, including immune cells. Here, we discuss the applications of patient-derived tumor organoid cultures and the possibilities in using complex immune-organoid cultures to provide preclinical testing platforms for precision cancer immunotherapy.Peer reviewe

    Protocol for 3D drug sensitivity and resistance testing of patient-derived cancer cells in 384-well plates

    Get PDF
    Publisher Copyright: © 2022Establishment of drug testing of patient-derived cancer cells (PDCs) in physiologically relevant 3-dimensional (3D) culture is central for drug discovery and cancer research, as well as for functional precision medicine. Here, we describe the detailed protocol allowing the 3D drug testing of PDCs - or any type of cells of interest - in Matrigel in 384-well plate format using automation. We also provide an alternative protocol, which does not require supporting matrices. The cancer tissue is obtained directly from clinics (after surgery or biopsy) and processed into single cell suspension. Systematic drug sensitivity and resistance testing (DSRT) is carried out on the PDCs directly after cancer cell isolation from tissue or on cells expanded for a few passages. In the 3D-DSRT assay, the PDCs are plated in 384-well plates in Matrigel, grown as spheroids, and treated with compounds of interest for 72 h. The cell viability is directly measured using a luminescence-based assay. Alternatively, prior to the cell viability measurement, drug-treated cells can be directly subjected to automated high-content bright field imaging or stained for fluorescence (live) cell microscopy for further image analysis. This is followed by the quality control and data analysis. The 3D-DSRT can be performed within a 1-3-week timeframe of the clinical sampling of cancer tissue, depending on the amount of the obtained tissue, growth rate of cancer cells, and the number of drugs being tested. The 3D-DSRT method can be flexibly modified, e.g., to be carried out with or without supporting matrices with U-bottom 384-well plates when appropriate for the PDCs or other cell models used.Peer reviewe

    Ex Vivo Drug Testing in Patient-derived Papillary Renal Cancer Cells Reveals EGFR and the BCL2 Family as Therapeutic Targets

    Full text link
    BACKGROUND Immune checkpoint inhibitors and antiangiogenic agents are used for first-line treatment of advanced papillary renal cell carcinoma (pRCC) but pRCC response rates to these therapies are low. OBJECTIVE To generate and characterise a functional ex vivo model to identify novel treatment options in advanced pRCC. DESIGN, SETTING, AND PARTICIPANTS We established patient-derived cell cultures (PDCs) from seven pRCC samples from patients and characterised them via genomic analysis and drug profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Comprehensive molecular characterisation in terms of copy number analysis and whole-exome sequencing confirmed the concordance of pRCC PDCs with the original tumours. We evaluated their sensitivity to novel drugs by generating drug scores for each PDC. RESULTS AND LIMITATIONS PDCs confirmed pRCC-specific copy number variations such as gains in chromosomes 7, 16, and 17. Whole-exome sequencing revealed that PDCs retained mutations in pRCC-specific driver genes. We performed drug screening with 526 novel and oncological compounds. Whereas exposure to conventional drugs showed low efficacy, the results highlighted EGFR and BCL2 family inhibition as the most effective targets in our pRCC PDCs. CONCLUSIONS High-throughput drug testing on newly established pRCC PDCs revealed that inhibition of EGFR and BCL2 family members could be a therapeutic strategy in pRCC. PATIENT SUMMARY We used a new approach to generate patient-derived cells from a specific type of kidney cancer. We showed that these cells have the same genetic background as the original tumour and can be used as models to study novel treatment options for this type of kidney cancer

    Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine

    Get PDF
    Publisher Copyright: Copyright © 2022 Feola, Russo, Martins, Lopes, Vandermeulen, Fluhler, De Giorgi, Fusciello, Pesonen, YlösmÀki, Antignani, Chiaro, Hamdan, Feodoroff, Grönholm and Cerullo.Oncolytic Viruses (OVs) work through two main mechanisms of action: the direct lysis of the virus-infected cancer cells and the release of tumor antigens as a result of the viral burst. In this sc.enario, the OVs act as in situ cancer vaccines, since the immunogenicity of the virus is combined with tumor antigens, that direct the specificity of the anti-tumor adaptive immune response. However, this mechanism in some cases fails in eliciting a strong specific T cell response. One way to overcome this problem and enhance the priming efficiency is the production of genetically modified oncolytic viruses encoding one or more tumor antigens. To avoid the long and expensive process related to the engineering of the OVs, we have exploited an approach based on coating OVs (adenovirus and vaccinia virus) with tumor antigens. In this work, oncolytic viruses encoding tumor antigens and tumor antigen decorated adenoviral platform (PeptiCRAd) have been used as cancer vaccines and evaluated both for their prophylactic and therapeutic efficacy. We have first tested the oncolytic vaccines by exploiting the OVA model, moving then to TRP2, a more clinically relevant tumor antigen. Finally, both approaches have been investigated in tumor neo-antigens settings. Interestingly, both genetically modified oncolytic adenovirus and PeptiCRAd elicited T cells-specific anti-tumor responses. However, in vitro cross-representation experiments, showed an advantage of PeptiCRAd as regards the fast presentation of the model epitope SIINFEKL from OVA in an immunogenic rather than tolerogenic fashion. Here two approaches used as cancer oncolytic vaccines have been explored and characterized for their efficacy. Although the generation of specific anti-tumor T cells was elicited in both approaches, PeptiCRAd retains the advantage of being rapidly adaptable by coating the adenovirus with a different set of tumor antigens, which is crucial in personalized cancer vaccines clinical setting.Peer reviewe

    A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines

    Get PDF
    Besides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate > 8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and HEX software. The latter is a tool previously developed by Jacopo, 2020, able to identify tumor antigens similar to pathogen antigens in order to exploit molecular mimicry and tumor pathogen cross-reactive T cells in cancer vaccine development. The generated list of candidates (26 in total) was further tested in a functional characterization assay using interferon-gamma enzyme-linked immunospot (ELISpot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, nontreated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.Peer reviewe

    Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids

    Get PDF
    Background Despite the success of immune checkpoint inhibitors against PD-L1 in the clinic, only a fraction of patients benefit from such therapy. A theoretical strategy to increase efficacy would be to arm such antibodies with Fc-mediated effector mechanisms. However, these effector mechanisms are inhibited or reduced due to toxicity issues since PD-L1 is not confined to the tumor and also expressed on healthy cells. To increase efficacy while minimizing toxicity, we designed an oncolytic adenovirus that secretes a cross-hybrid Fc-fusion peptide against PD-L1 able to elicit effector mechanisms of an IgG1 and also IgA1 consequently activating neutrophils, a population neglected by IgG1, in order to combine multiple effector mechanisms. Methods The cross-hybrid Fc-fusion peptide comprises of an Fc with the constant domains of an IgA1 and IgG1 which is connected to a PD-1 ectodomain via a GGGS linker and was cloned into an oncolytic adenovirus. We demonstrated that the oncolytic adenovirus was able to secrete the cross-hybrid Fc-fusion peptide able to bind to PD-L1 and activate multiple immune components enhancing tumor cytotoxicity in various cancer cell lines, in vivo and ex vivo renal-cell carcinoma patient-derived organoids. Results Using various techniques to measure cytotoxicity, the cross-hybrid Fc-fusion peptide expressed by the oncolytic adenovirus was shown to activate Fc-effector mechanisms of an IgA1 (neutrophil activation) as well as of an IgG1 (natural killer and complement activation). The activation of multiple effector mechanism simultaneously led to significantly increased tumor killing compared with FDA-approved PD-L1 checkpoint inhibitor (Atezolizumab), IgG1-PDL1 and IgA-PDL1 in various in vitro cell lines, in vivo models and ex vivo renal cell carcinoma organoids. Moreover, in vivo data demonstrated that Ad-Cab did not require CD8+ T cells, unlike conventional checkpoint inhibitors, since it was able to activate other effector populations. Conclusion Arming PD-L1 checkpoint inhibitors with Fc-effector mechanisms of both an IgA1 and an IgG1 can increase efficacy while maintaining safety by limiting expression to the tumor using oncolytic adenovirus. The increase in tumor killing is mostly attributed to the activation of multiple effector populations rather than activating a single effector population leading to significantly higher tumor killing.Peer reviewe

    Tumörorganoider frÄn patienter som testplattform för onkolytisk virusterapi

    No full text
    Within the field of cancer immunotherapy, immune checkpoint inhibitors have been a revolution since they provoke re-activation of T-cell immune responses towards cancer. Despite their success, they only work in 13% of the patients because of a poorly immunogenic tumor, mostly due to weak T-cell infiltration. Oncolytic viruses have shown the ability to work in synergy with checkpoint inhibitors because of their tumour-specific tropism, innate immunogenicity and ability to secrete immunostimulatory agents into the tumor microenvironment. Regardless of the great potential, we lack suitable pre-clinical models to test this effect. In this study we developed renal cell carcinoma-derived organoids as in vitro platforms due to their high pre-clinical predictability compared to that of murine and in vitro 2-dimensional cell culture models. To test the ability of oncolytic viruses to stimulate the immune system, we generated three cytokine-expressing (CXCL9, CXCL10 and IL-15) oncolytic adenoviruses using a novel cloning method that we developed. We have shown that these viruses successfully produce high amount of the cytokine and attract peripheral blood mononuclear cells freshly isolated from Buffy coats. Genetically modified oncolytic adenoviruses were also shown to infect and kill human renal cell carcinoma organoids. Together, our results demonstrate the potential of organoids as test platforms for oncolytic virus -based therapy and the importance of adequate cytokine expression in T-cell recruitment. The tumor organoid platform we developed will be useful for advancing patient-specific treatment strategies and serve as a base for innovative immunotherapy models.Inom immunterapeutisk cancerforskning, har immun checkpoint-inhibitorer utgjort en revolution genom deras förmÄga att Äteraktivera T-cellförmedlade immunresponser riktade mot cancer. Trots deras framgÄng fungerar de enbart hos 13% av patienterna, pÄ grund av tumörernas svagt immunogena profil, hÀrstammande frÄn svag T-cell infiltrering. Onkolytiska virus har visat synergistisk funktionsförmÄga med checkpoint-inhibitorer pÄ grund av deras tumörspecifika tropism, naturliga immunogenitet samt förmÄga att utsöndra immunstimulerande faktorer i tumörmikromiljön. Trots lovande insikter saknar vi Ànnu relevanta prekliniska modeller att testa denna effekt. I denna studie utvecklade vi en in vitro testplattform av organoider frÄn patienter med njurcell-karcinom, pÄ grund av deras höga prekliniska förutsÀgbarhet jÀmfört musmodeller och in vitro 2-dimensionella cellodlingsmodeller. För att testa förmÄgan hos onkolytiska virus att stimulera immunsystemet, framstÀllde vi tre cytokin-uttryckande (CXCL9, CXCL10 och IL-15) onkolytiska adenovirus genom utnyttjande av en ny kloningsmetod vi utvecklat. Vi visade att dessa virus framgÄngsrikt producerar stora cytokinmÀngder samt attraherar perifera mononukleÀra blodceller, fÀrskt isolerade frÄn lÀttcellskoncentrat. Genetiskt modifierade onkolytiska adenovirus visades Àven infektera och döda organoider av njurcell-karcinom. Sammantaget demonstrerar vÄra resultat möjligheten hos organoider att fungera som testplattformer för onkolytisk virus-baserad terapi samt relevansen av adekvat cytokinexpression för T-cellattraktion. Tumörorganoid plattformen vi framstÀllde lÀmpar sig för utveckling av patient-specifika terapimetoder och fungerar som grund för innovativa immunterapimodeller

    Controlled release of enhanced cross-hybrid IgGA Fc PD-L1 inhibitors using oncolytic adenoviruses

    No full text
    Immune checkpoint inhibitors have clinical success in prolonging the life of many cancer patients. However, only a minority of patients benefit from such therapy, calling for further improvements. Currently, most PD-L1 checkpoint inhibitors in the clinic do not elicit Fc effector mechanisms that would substantially increase their efficacy. To gain potency and circumvent off-target effects, we previously designed an oncolytic adenovirus (Ad-Cab) expressing an Fc fusion peptide against PD-L1 on a cross-hybrid immunoglobulin GA (IgGA) Fc. Ad-Cab elicited antibody effector mechanisms of IgG1 and IgA, which led to higher tumor killing compared with each isotype alone and with clinically approved PD-L1 checkpoint inhibitors. In this study, we further improved the therapy to increase the IgG1 Fc effector mechanisms of the IgGA Fc fusion peptide (Ad Cab FT) by adding four somatic mutations that increase natural killer (NK) cell activation. Ad-Cab FT was shown to work better at lower concentrations compared with Ad-Cab in vitro and in vivo and to have better tumor-and myeloid-derived suppressor cell killing, likely because of higher NK cell activation. Additionally, the biodistribution of the Fc fusion peptide demonstrated targeted release in the tumor microenvironment with minimal or no leakage to the peripheral blood and organs in mice. These data demonstrate effective and safe use of Ad-Cab FT, bidding for further clinical investigation.Peer reviewe

    PeptiCHIP : A Microfluidic Platform for Tumor Antigen Landscape Identification

    Get PDF
    Publisher Copyright: © 2021 The Authors. Published by American Chemical Society.Identification of HLA class I ligands from the tumor surface (ligandome or immunopeptidome) is essential for designing T-cell mediated cancer therapeutic approaches. However, the sensitivity of the process for isolating MHC-I restricted tumor-specific peptides has been the major limiting factor for reliable tumor antigen characterization, making clear the need for technical improvement. Here, we describe our work from the fabrication and development of a microfluidic-based chip (PeptiCHIP) and its use to identify and characterize tumor-specific ligands on clinically relevant human samples. Specifically, we assessed the potential of immobilizing a pan-HLA antibody on solid surfaces via well-characterized streptavidin-biotin chemistry, overcoming the limitations of the cross-linking chemistry used to prepare the affinity matrix with the desired antibodies in the immunopeptidomics workflow. Furthermore, to address the restrictions related to the handling and the limited availability of tumor samples, we further developed the concept toward the implementation of a microfluidic through-flow system. Thus, the biotinylated pan-HLA antibody was immobilized on streptavidin-functionalized surfaces, and immune-affinity purification (IP) was carried out on customized microfluidic pillar arrays made of thiol-ene polymer. Compared to the standard methods reported in the field, our methodology reduces the amount of antibody and the time required for peptide isolation. In this work, we carefully examined the specificity and robustness of our customized technology for immunopeptidomics workflows. We tested this platform by immunopurifying HLA-I complexes from 1 × 106 cells both in a widely studied B-cell line and in patients-derived ex vivo cell cultures, instead of 5 × 108 cells as required in the current technology. After the final elution in mild acid, HLA-I-presented peptides were identified by tandem mass spectrometry and further investigated by in vitro methods. These results highlight the potential to exploit microfluidics-based strategies in immunopeptidomics platforms and in personalized immunopeptidome analysis from cells isolated from individual tumor biopsies to design tailored cancer therapeutic vaccines. Moreover, the possibility to integrate multiple identical units on a single chip further improves the throughput and multiplexing of these assays with a view to clinical needs.Peer reviewe

    Development of mesothelioma-specific oncolytic immunotherapy enabled by immunopeptidomics of murine and human mesothelioma tumors

    No full text
    Abstract Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination. To date, research on mesothelioma has focused on the identification of molecular signatures to better classify and characterize the disease, and little is known about therapeutic targets that engage cytotoxic (CD8+) T cells. In this study we investigate the immunopeptidomic antigen-presented landscape of MPM in both murine (AB12 cell line) and human cell lines (H28, MSTO-211H, H2452, and JL1), as well as in patients’ primary tumors. Applying state-of-the-art immuno-affinity purification methodologies, we identify MHC I-restricted peptides presented on the surface of malignant cells. We characterize in vitro the immunogenicity profile of the eluted peptides using T cells from human healthy donors and cancer patients. Furthermore, we use the most promising peptides to formulate an oncolytic virus-based precision immunotherapy (PeptiCRAd) and test its efficacy in a mouse model of mesothelioma in female mice. Overall, we demonstrate that the use of immunopeptidomic analysis in combination with oncolytic immunotherapy represents a feasible and effective strategy to tackle untreatable tumors
    corecore