2 research outputs found

    High Efficiency Photoelectrocatalytic Methanol Oxidation on CdS Quantum Dots Sensitized Pt Electrode

    No full text
    A cadmium sulfide quantum dots sensitized Pt (Pt–CdS) composite was synthesized using a solvothermal method and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy. The catalytic properties of the as-prepared electrode for methanol oxidation were evaluated by cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectrum (EIS) and photocurrent responses. The as-prepared Pt–CdS electrode displayed a significant enhancement in the electrocatalytic activity and stability for methanol oxidation in the presence of visible light irradiation. The synergistic effect of both the electro- and photocatalytic reaction contributes to this enhanced catalytic performance. Our result suggests a new paradigm to construct photoelectrocatalysts with high performance and good stability for direct methanol fuel cells with the assistance of visible-light illumination
    corecore