2 research outputs found

    Pregnancy-associated bleeding and genetics:Five sequence variants in the myometrium and progesterone signaling pathway are associated with postpartum hemorrhage

    No full text
    Bleeding in early pregnancy and postpartum hemorrhage (PPH) bear substantial risks, with the former closely associated with pregnancy loss and the latter being the foremost cause of maternal death, underscoring the severity of these complications in maternal-fetal health. Here, we investigated the genetic variation underlying aspects of pregnancy-associated bleeding and identified five loci associated with PPH through a meta-analysis of 21,512 cases and 259,500 controls. Functional annotation analysis indicated candidate genes, HAND2, TBX3, and RAP2C/FRMD7, at three loci and showed that at each locus, associated variants were located within binding sites for progesterone receptors (PGR). Furthermore, there were strong genetic correlations with birth weight, gestational duration, and uterine fibroids. Early bleeding during pregnancy (28,898 cases and 302,894 controls) yielded no genome-wide association signals, but showed strong genetic correlation with a variety of human traits, indicative of polygenic and pleiotropic effects. Our results suggest that postpartum bleeding is related to myometrium dysregulation, whereas early bleeding is a complex trait related to underlying health and possibly socioeconomic status

    Maternal and fetal genetic contribution to gestational weight gain

    No full text
    BACKGROUND: Clinical recommendations to limit gestational weight gain (GWG) imply high GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of several inter-related complex phenotypes (maternal fat deposition and vascular expansion, placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG could help clarify the potential effect of its different components on maternal and offspring health. Here we explore the genetic contribution to total, early and late GWG. PARTICIPANTS AND METHODS: A genome-wide association study was used to identify maternal and fetal variants contributing to GWG in up to 10 543 mothers and 16 317 offspring of European origin, with replication in 10 660 mothers and 7561 offspring. Additional analyses determined the proportion of variability in GWG from maternal and fetal common genetic variants and the overlap of established genome-wide significant variants for phenotypes relevant to GWG (e.g. maternal BMI and glucose, birthweight). RESULTS: Approximately 20% of the variability in GWG was tagged by common maternal genetic variants, and the fetal genome made a surprisingly minor contribution to explaining variation in GWG. Variants near the Pregnancy Specific Beta-1-Glycoprotein 5 (PSG5) gene reached genome-wide significance (P=1.71 x 10-8) for total GWG in the offspring genome, but did not replicate. Some established variants associated with increased BMI, fasting glucose and type 2 diabetes were associated with lower early, and higher later GWG. Maternal variants related to higher systolic blood pressure were related to lower late GWG. Established maternal and fetal birthweight variants were largely unrelated to GWG. CONCLUSION: We found a modest contribution of maternal common variants to GWG and some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These findings suggest that associations between GWG and later offspring/maternal outcomes may be due to the relationship of maternal BMI and diabetes with GWG.International Journal of Obesity accepted article preview online, 09 October 2017. doi:10.1038/ijo.2017.248
    corecore