21 research outputs found

    An eco-climatic framework for evaluating the resilience of vegetation to water deficit

    Get PDF
    The surge in global efforts to understand the causes and consequences of drought on forest ecosystems has tended to focus on specific impacts such as mortality. We propose an ecoclimatic framework that takes a broader view of the ecological relevance of water deficits, linking elements of exposure and resilience to cumulative impacts on a range of ecosystem processes. This ecoclimatic framework is underpinned by two hypotheses: (i) exposure to water deficit can be represented probabilistically and used to estimate exposure thresholds across different vegetation types or ecosystems; and (ii) the cumulative impact of a series of water deficit events is defined by attributes governing the resistance and recovery of the affected processes. We present case studies comprising Pinus edulis and Eucalyptus globulus, tree species with contrasting ecological strategies, which demonstrate how links between exposure and resilience can be examined within our proposed framework. These examples reveal how climatic thresholds can be defined along a continuum of vegetation functional responses to water deficit regimes. The strength of this framework lies in identifying climatic thresholds on vegetation function in the absence of more complete mechanistic understanding, thereby guiding the formulation, application and benchmarking of more detailed modelling

    The roles of the formal and informal sectors in the provision of effective science education

    Get PDF
    For many years, formal school science education has been criticised by students, teachers, parents and employers throughout the world. This article presents an argument that a greater collaboration between the formal and the informal sector could address some of these criticisms. The causes for concern about formal science education are summarised and the major approaches being taken to address them are outlined. The contributions that the informal sector currently makes to science education are identified. It is suggested that the provision of an effective science education entails an enhanced complementarity between the two sectors. Finally, there is a brief discussion of the collaboration and communication still needed if this is to be effective

    Preparation and properties of diarsine

    No full text

    The place of analogies in science education

    No full text
    The role of analogy in learning has been extensively researched in science education. The core purpose of the use of analogy as a strategy deployed in teaching is that of developing understanding of abstract phenomena from concrete reference. Whilst such an objective is desirable, it is predicated on the assumption that there is an agreed interpretation of the particular phenomena under scrutiny to which all subscribe. This paper argues that such a position is untenable and that the research enterprise should shift focus from determining the effectiveness of analogy in cognitive transfer from base to target domains towards the recognition of the role of analogy in generating engagement in the learning process. In such a paradigm, meaning in science for both learner and teacher is derived from discourse rather than being independent of it. The discussion draws on hermeneutic philosophy to provide a theoretical framework to illustrate the implications for teacher subject and pedagogical knowledge

    Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna

    No full text
    * 1 The relative roles of climate and management for driving changes in woody cover in savannas over the past century are the subject of active debate. Perspectives arising from short-term, small-scale, local experiments are rarely tested over larger scales and longer time frames. * 2 Regression analysis and aerial photography were used to assess the relative importance of land-use history (fire and grazing), rainfall and initial woody cover (woody cover at the beginning of a sample period relative to the range of woody cover expressed within a land type) in accounting for rates of change in overstorey and understorey cover between the 1940s and 1990s in central Queensland, Australia. Analyses included 279 site-period combinations representing five semi-arid eucalypt savanna land-types within a 125 755 km2 region. * 3 Fire and grazing variables provided no explanatory power. In general, relative rainfall (rainfall for a given period standardized against mean annual rainfall) was positively related and initial woody cover negatively related to rates of change in both the overstorey and the understorey. The interaction between rainfall and initial woody cover was significant, reflecting the fact that increases in cover coincided with low initial cover when rainfall is higher than average, whereas decreases in cover typically occurred with high initial cover, regardless of rainfall. * 4 On average, overstorey and understorey cover increased over the second half of the 20th century. This pattern is consistent with the first half of the 20th century having more intense droughts and being drier overall than the relatively wet second half. * 5 The findings highlight the primary importance of interactions between rainfall fluctuations and density dependence as determinants of large-scale, long-term woody plant cover dynamics in savannas subject to large rainfall excess and deficit over multiyear time-scales
    corecore