108 research outputs found

    Mindergie: A pervasive learning game for pro-environmental behaviour at the workplace

    Get PDF
    This chapter reports about a pervasive learning game to increase the environmental awareness and pro-environmental behaviour at the workplace. Based on a discussion of the theoretical background and related work we introduce the game design and game elements. Results of a formative evaluation study are presented and discussed. Results show that incentive mechanisms are less important than challenging game components that involve employees in proposing solutions for energy conservation at the workplace. Conclusions are drawn for future games and energy conservation activities at the workplace.This project has been partially funded by a SURFnet innovation grant for sustainable ICT solutions and partially by the Welten Institute – Research Centre for Learning, Teaching and Technology of the Open University of the Netherlands

    Pichinde virus induces microvascular endothelial cell permeability through the production of nitric oxide

    Get PDF
    This report is the first to demonstrate infection of human endothelial cells by Pichinde virus (PIC). PIC infection induces an upregulation of the inducible nitric oxide synthase gene; as well as an increase in detectable nitric oxide (NO). PIC induces an increase in permeability in endothelial cell monolayers which can be abrogated at all measured timepoints with the addition of a nitric oxide synthase inhibitor, indicating a role for NO in the alteration of endothelial barrier function. Because NO has shown antiviral activity against some viruses, viral titer was measured after addition of the NO synthase inhibitor and found to have no effect in altering virus load in infected EC. The NO synthase inhibition also has no effect on levels of activated caspases induced by PIC infection. Taken together, these data indicate NO production induced by Pichinde virus infection has a pathogenic effect on endothelial cell monolayer permeability

    Genetic Diversity of EBV-Encoded LMP1 in the Swiss HIV Cohort Study and Implication for NF-Κb Activation

    Get PDF
    Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-ÎșB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-ÎșB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-ÎșB activation potential. We found that a number of variants mediate higher NF-ÎșB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-ÎșB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-ÎșB activation levels compared to B95-8 LMP1

    Alterations in NF-ÎșB and RBP-JÎș by Arenavirus Infection of Macrophages In Vitro and In Vivo

    No full text
    Pichinde virus is an arenavirus that infects guinea pigs and serves as an animal model for human Lassa fever. An attenuated Pichinde virus variant (P2) and a virulent variant (P18) are being used to delineate pathogenic mechanisms that culminate in shock. In guinea pigs, the infection has been shown to begin in peritoneal macrophages following intraperitoneal inoculation and then spreads to the spleen and other reticuloendothelial organs. We show here that infection of the murine monocytic cell line P388D1 with either Pichinde virus variant resulted in the induction of inflammatory cytokines and effectors, including interleukin-6 and tumor necrosis factor alpha. Since these genes are regulated in part by the cellular transcription factors NF-ÎșB and RBP-JÎș, we compared the activities of NF-ÎșB and RBP-JÎș in P388D1 cells following infection with Pichinde virus. The attenuated P2 virus inhibited NF-ÎșB activation and caused a shift in the size of the RBP-JÎș complex. The virulent P18 virus showed less inhibition of NF-ÎșB and failed to alter the size of the RBP-JÎș complex. Peritoneal cells from P2-infected guinea pigs showed induction of NF-ÎșB RelA/p50 heterodimer and p50/p50 homodimer and manifested an increase in the size of RBP-JÎș. By contrast, P18 induced large amounts of the NF-ÎșB p50/p50 dimer but failed to induce RelA/p50 or to cause an increase in the RBP-JÎș size. Taken together, these changes suggest that the attenuated viral strain induces an “activation” of macrophages, while the virulent form of the virus does not
    • 

    corecore