35 research outputs found

    Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection

    Get PDF
    Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNÎł responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naĂŻve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program

    Get PDF
    The Environmental Influences on Child Health Outcomes (ECHO) Program will evaluate environmental factors affecting children’s health (perinatal, neurodevelopmental, obesity, respiratory, and positive health outcomes) by pooling cohorts composed of >50,000 children in the largest US study of its kind. Our objective was to identify opportunities for studying chemicals and child health using existing or future ECHO chemical exposure data. We described chemical-related information collected by ECHO cohorts and reviewed ECHO-relevant literature on exposure routes, sources, and environmental and human monitoring. Fifty-six ECHO cohorts have existing or planned chemical biomonitoring data for mothers or children. Environmental phenols/parabens, phthalates, metals/metalloids, and tobacco biomarkers are each being measured by ≥15 cohorts, predominantly during pregnancy and childhood, indicating ample opportunities to study child health outcomes. Cohorts are collecting questionnaire data on multiple exposure sources and conducting environmental monitoring including air, dust, and water sample collection that could be used for exposure assessment studies. To supplement existing chemical data, we recommend biomonitoring of emerging chemicals, nontargeted analysis to identify novel chemicals, and expanded measurement of chemicals in alternative biological matrices and dust samples. ECHO’s rich data and samples represent an unprecedented opportunity to accelerate environmental chemical research to improve the health of US children

    Is it possible to visualise any stock flow consistent model as a directed acyclic graph?

    Get PDF
    Yes it is. We rigorously demonstrate the equivalence of any stock flow consistent (SFC) model to a directed acyclic graph (DAG) using condensation graphs. The equivalence between stock flow models and DAGs is useful both for visualising large-scale macroeconomic models of this type and for inferring causality within these models. We developed a new package to build and simulate any SFC model and generate the corresponding DAGs, and we provide an example of this package using a well known model from the literature

    Mathematical modeling of complex contagion on clustered networks

    Get PDF
    The spreading of behavior, such as the adoption of a new innovation, is influenced by the structure of social networks that interconnect the population. In the experiments of Centola [15], adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g., of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, crucial to the social reinforcement mechanism, which posits an increased probability of a person adopting behavior that has been adopted by two or more neighbors. In this paper we modify the analytical approach that was introduced by Hébert-Dufresne et al. [19], to study disease-spread on clustered networks. We show how the approximation method can be adapted to a complex contagion model, and confirm the accuracy of the method with numerical simulations. The analytical results of the model enable us to quantify the level of social reinforcement that is required to observe—as in Centola's experiments—faster diffusion on clustered topologies than on random networks

    Targeted therapies in the treatment of advanced/metastatic NSCLC

    No full text
    The treatment of advanced non-small cell lung cancer (NSCLC) has evolved substantially during the last years. Chemotherapy remains the cornerstone of treatment and prolongs survival with a positive impact on quality of life. However, we seem to have reached a plateau of activity in the treatment of NSCLC. Recently, the addition of bevacizumab or cetuximab to chemotherapy doublets has improved the outcome in selected patients with advanced NSCLC. Furthermore, the use of erlotinib and gefitinib is an alternative for second line treatment. Advances in our understanding of molecular biology of cancer and mechanisms of tumourigenesis have further enabled the discovery of several potential molecular targets and development of novel 'targeted therapies'. The purpose of this study is to review current data on the role of targeted therapies in the treatment of advanced NSCLC. (C) 2009 Elsevier Ltd. All rights reserved

    Branching process descriptions of information cascades on twitter

    Get PDF
    A detailed analysis of Twitter-based information cascades is performed, and it is demonstrated that branching process hypotheses are approximately satisfied. Using a branching process framework, models of agent-to-agent transmission are compared to conclude that a limited attention model better reproduces the relevant characteristics of the data than the more common independent cascade model. Existing and new analytical results for branching processes are shown to match well to the important statistical characteristics of the empirical information cascades, thus demonstrating the power of branching process descriptions for understanding social information spreading.</p

    In vivo Loss of Expression of Argininosuccinate Synthetase in Malignant Pleural Mesothelioma is a Biomarker for Susceptibility to Arginine Depletion.

    No full text
    Purpose: Malignant pleural mesothelioma (MPM) is an increasing health burden on many societies worldwide and, being generally resistant to conventional treatment, has a poor prognosis with a median survival of &amp;lt;1 year. Novel therapies based on the biology of this tumor seek to activate a proapoptotic cellular pathway. In this study, we investigated the expression and biological significance of argininosuccinate synthetase (AS), a rate-limiting enzyme in arginine production. Experimental Design: Initially, we documented down-regulation of AS mRNA in three of seven MPM cell lines and absence of AS protein in four of seven MPM cell lines. We confirmed that the 9q34 locus, the site of the AS gene, was intact using a 1-Mb comparative genomic hybridization array; however, there was aberrant promoter CpG methylation in cell lines lacking AS expression, consistent with epigenetic regulation of transcription. To investigate the use of AS negativity as a therapeutic target, arginine was removed from the culture medium of the MPM cell lines. Results: In keeping with the cell line data, 63% (52 of 82) of patients had tumors displaying reduced or absent AS protein, as assessed using a tissue microarray. Cell viability declined markedly in the AS-negative cell lines 2591 and MSTO but not in the AS-positive cell line, 28. This response was apparent by day 4 and maintained by day 9 in vitro. Arginine depletion induced BAX conformation change and mitochondrial inner membrane depolarization selectively in AS-negative MPM cells. Conclusions: In summary, we have identified AS negativity as a frequent event in MPM in vivo, leading to susceptibility to cytotoxicity following restriction of arginine. A phase II clinical trial is planned to evaluate the role of arginine depletion in patients with AS-negative MPM
    corecore