58 research outputs found

    Monocyte derived dendritic cells generated by IFN-α acquire mature dendritic and natural killer cell properties as shown by gene expression analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dendritic cell (DC) vaccines can induce antitumor immune responses in patients with malignant diseases, while the most suitable DC culture conditions have not been established yet. In this study we compared monocyte derived human DC from conventional cultures containing GM-CSF and IL-4/TNF-α (IL-4/TNF-DC) with DC generated by the novel protocol using GM-CSF and IFN-α (IFN-DC).</p> <p>Methods</p> <p>To characterise the molecular differences of both DC preparations, gene expression profiling was performed using Affymetrix microarrays. The data were conformed on a protein level by immunophenotyping, and functional tests for T cell stimulation, migration and cytolytic activity were performed.</p> <p>Results</p> <p>Both methods resulted in CD11c+ CD86+ HLA-DR+ cells with a typical DC morphology that could efficiently stimulate T cells. But gene expression profiling revealed two distinct DC populations.</p> <p>Whereas IL-4/TNF-DC showed a higher expression of genes envolved in phagocytosis IFN-DC had higher RNA levels for markers of DC maturity and migration to the lymph nodes like DCLAMP, CCR7 and CD49d. This different orientation of both DC populations was confined by a 2.3 fold greater migration in transwell experiments (p = 0.01).</p> <p>Most interestingly, IFN-DC also showed higher RNA levels for markers of NK cells such as TRAIL, granzymes, KLRs and other NK cell receptors. On a protein level, intracytoplasmatic TRAIL and granzyme B were observed in 90% of IFN-DC. This translated into a cytolytic activity against K562 cells with a median specific lysis of 26% at high effector cell numbers as determined by propidium iodide uptake, whereas IL-4/TNF-DC did not induce any tumor cell lysis (p = 0.006). Thus, IFN-DC combined characteristics of mature DC and natural killer cells.</p> <p>Conclusion</p> <p>Our results suggest that IFN-DC not only stimulate adaptive but also mediate innate antitumor immune responses. Therefore, IFN-DC should be evaluated in clinical vaccination trials. In particular, this could be relevant for patients with diseases responsive to a treatment with IFN-α such as Non-Hodgkin lymphoma or chronic myeloid leukemia.</p

    Effects of Radiotherapy in the treatment of multiple myeloma: a retrospective analysis of a Single Institution

    Get PDF
    Background: Palliative irradiation of osteolytic lesions is a considerable component in the treatment for patients with multiple myeloma. In this study, we analyzed the efficacy of irradiation in these patients. Patients and methods: We retrospectively analyzed 153 patients with multiple myeloma who were admitted to our department between 1989 and 2013. According to the staging system of Durie & Salmon 116 patients were classified as stage III. 107/153 patients were treated with radiotherapy of at least one and up to 6 bony lesions at different times. In order to evaluate the effect of local radiotherapy on pain relief and bone recalcification a uni-and multivariate analysis was performed using a binary logistic regression model to correct for multiple measurements. Complete information on dose, fractionation and volume of radiotherapy was available from 81 patients treated in 136 target volumes for pain relief, and from 69 patients treated in 108 target volumes for recalcification. Total radiation doses varied between 8 Gy to 50 Gy (median dose 25 Gy in 2.5 Gy fractions, 5 times a week). Results: Radiotherapy resulted in complete local pain relief in 31% and partial local pain relief in 54% of the patients. In the univariate analysis, higher total radiation doses (p = 0.023) and higher age (p = 0.014) at the time of radiotherapy were significantly associated with a higher likelihood of pain relief, whereas no significant association was detected for concurrent systemic treatment, type and stage of myeloma and location of bone lesions. The same variables were independent predictors for pain relief in the multivariate analysis. Recalcification was observed in 48% of irradiated bone lesions. In the uni-and multivariate analysis higher radiation doses were significantly associated (p = 0.048) with an increased likelihood of recalcification. Side effects of radiotherapy were generally mild. Conclusions: Higher total biological radiation doses were associated with better pain relief and recalcification in this retrospective evaluation of multiple myeloma patients. In addition, in the elderly the therapeutic measures appear to develop a better analgesic effect

    a randomized, open, multicenter phase III trial of lenalidomide/dexamethasone versus lenalidomide/dexamethasone plus subsequent autologous stem cell transplantation and lenalidomide maintenance in patients with relapsed multiple myeloma

    Get PDF
    Background Despite novel therapeutic agents, most multiple myeloma (MM) patients eventually relapse. Two large phase III trials have shown significantly improved response rates (RR) of lenalidomide/dexamethasone compared with placebo/dexamethasone in relapsed MM (RMM) patients. These results have led to the approval of lenalidomide for RMM patients and lenalidomide/dexamethasone has since become a widely accepted second-line treatment. Furthermore, in RMM patients consolidation with high-dose chemotherapy plus autologous stem cell transplantation has been shown to significantly increase progression free survival (PFS) as compared to cyclophosphamide in a phase III trial. The randomized prospective ReLApsE trial is designed to evaluate PFS after lenalidomide/dexamethasone induction, high-dose chemotherapy consolidation plus autologous stem cell transplantation and lenalidomide maintenance compared with the well-established lenalidomide/dexamethasone regimen in RMM patients. Methods/Design ReLApsE is a randomized, open, multicenter phase III trial in a planned study population of 282 RMM patients. All patients receive three lenalidomide/dexamethasone cycles and - in absence of available stem cells from earlier harvesting - undergo peripheral blood stem cell mobilization and harvesting. Subsequently, patients in arm A continue on consecutive lenalidomide/dexamethasone cycles, patients in arm B undergo high dose chemotherapy plus autologous stem cell transplantation followed by lenalidomide maintenance until discontinuation criteria are met. Therapeutic response is evaluated after the 3rd (arm A + B) and the 5th lenalidomide/dexamethasone cycle (arm A) or 2 months after autologous stem cell transplantation (arm B) and every 3 months thereafter (arm A + B). After finishing the study treatment, patients are followed up for survival and subsequent myeloma therapies. The expected trial duration is 6.25 years from first patient in to last patient out. The primary endpoint is PFS, secondary endpoints include overall survival (OS), RR, time to best response and the influence of early versus late salvage high dose chemotherapy plus autologous stem cell transplantation on OS. Discussion This phase III trial is designed to evaluate whether high dose chemotherapy plus autologous stem cell transplantation and lenalidomide maintenance after lenalidomide/dexamethasone induction improves PFS compared with the well-established continued lenalidomide/dexamethasone regimen in RMM patients. Trial registration: ISRCTN16345835 (date of registration 2010-08-24)

    Rationale and design of the German-speaking myeloma multicenter group (GMMG) trial HD6: a randomized phase III trial on the effect of elotuzumab in VRD induction/consolidation and lenalidomide maintenance in patients with newly diagnosed myeloma

    Get PDF
    Background: Despite major advances in therapy, multiple myeloma is still an incurable malignancy in the majority of patients. To increase survival, deeper remissions (i.e. CR) translating into longer PFS need to be achieved. Incorporation of new drugs (i.e. bortezomib and lenalidomide) as induction and maintenance treatment in an intensified treatment concept, including high dose melphalan (200 mg/m2), has resulted in increased CR rates, and is considered the standard of care for younger patients. Elotuzumab in combination with lenalidomide and dexamethasone has given better results as lenalidomide and dexamethasone alone in a phase III trial. The GMMG-HD6 trial will be the first phase III trial investigating the role of elotuzumab in combination with bortezomib, lenalidomide and dexamethasone (VRD) induction/consolidation and lenalidomide maintenance within a high dose concept. Methods: GMMG-HD6 is a randomized, open, multicenter phase III trial. The planned recruitment number is 564 NDMM patients. All patients will receive 4 VRD cycles as induction and undergo peripheral blood stem cell mobilization and harvesting. Thereafter they will be treated with high dose melphalan therapy plus autologous stem cell transplantation followed by 2 cycles of VRD consolidation and lenalidomide maintenance. Patients in arm B1 + B2 will additionally receive elotuzumab in the induction phase, whereas patients in A2 + B2 will be treated with elotuzumab added to consolidation and maintenance. The primary endpoint of the trial is PFS. Secondary objectives and endpoints are OS, CR rates after induction therapy comparing the two arms VRD (A1 + A2) vs VRD + elotuzumab (B1 + B2), CR rates after consolidation treatment, best response to treatment during the study, time to progression (TTP), duration of response (DOR), toxicity and quality of life. Results: Since this is the publication of a study protocol of an ongoing study, no results can be presented. Discussion: This phase III trial is designed to evaluate whether the addition of elotuzumab to an intensified treatment concept with high dose melphalan chemotherapy plus autologous stem cell transplantation and induction, consolidation and maintenance treatment with bortezomib and lenalidomide is able to improve PFS compared to the same concept without elotuzumab. Trial registration: NCT02495922 on June 24th, 2015

    2016 ESC Position Paper on Cancer Treatments and Cardiovascular Toxicity

    No full text
    Was ist neu? Pathophysiologie und Manifestation Mechanismen und Häufigkeiten kardiovaskulärer Komplikationen sind für die Vielzahl aktueller onkologischer Therapeutika systematisch zusammengefasst, gegliedert nach 11 Krankheitskomplexen. Versorgungsstrukturen In Analogie zum „Herz“- oder „Endokarditis-Team“ wird die Implementierung von kardio-onkologisch spezialisierten, interdisziplinären Teams vorgeschlagen, die sich lokal um Monitoring und Management kardiovaskulärer Komplikationen und auch die Langzeitnachsorge onkologischer Patienten kümmern. Diagnostik und Definition Die diagnostische Basiserhebung vor Therapie besteht aus kardiovaskulärer Anamnese und je nach erwarteten Komplikationen EKG, Ischämieuntersuchung und Echokardiografie. Die Echokardiografie ist die Methode der Wahl zur Kontrolle der kardialen Funktion. Kardiotoxizität wird als Abfall der Ejektionsfraktion um mehr als 10 Prozentpunkte unter den unteren Referenzgrenzwert (&lt; 50 %) definiert. Neue Entwicklungen auch parametrischer Bildgebung des Kardio-MRTs eröffnen neue Perspektiven zur Charakterisierung des Myokards und Interstitiums bei kardiotoxischen Manifestationen. Prävention und Therapie Risikofaktoren, prävalente oder während der Therapie aufgetretene manifeste kardiovaskuläre Erkrankungen wie Herzinsuffizienz, Vorhofflimmern oder Koronarkrankheit werden nach aktuell gültigen Leitlinien behandelt. Bei hohem Risiko für Kardiotoxizität können präventiv ACE-Hemmer oder ß-Blocker eingesetzt werden.</jats:p

    Multiples Myelom

    No full text
    • …
    corecore