9 research outputs found

    Noval advance of histone modification in inflammatory skin diseases and related treatment methods

    Get PDF
    Inflammatory skin diseases are a group of diseases caused by the disruption of skin tissue due to immune system disorders. Histone modification plays a pivotal role in the pathogenesis and treatment of chronic inflammatory skin diseases, encompassing a wide range of conditions, including psoriasis, atopic dermatitis, lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata. Analyzing histone modification as a significant epigenetic regulatory approach holds great promise for advancing our understanding and managing these complex disorders. Additionally, therapeutic interventions targeting histone modifications have emerged as promising strategies for effectively managing inflammatory skin disorders. This comprehensive review provides an overview of the diverse types of histone modification. We discuss the intricate association between histone modification and prevalent chronic inflammatory skin diseases. We also review current and potential therapeutic approaches that revolve around modulating histone modifications. Finally, we investigated the prospects of research on histone modifications in the context of chronic inflammatory skin diseases, paving the way for innovative therapeutic interventions and improved patient outcomes

    Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma

    No full text
    Abstract Background Topical anticancer drugs offer a potential therapeutic modality with high compliance for treating cutaneous squamous cell carcinoma (cSCC). However, the existing topical treatments for cSCC are associated with limited penetrating ability to achieve the desired outcome. Therefore, there remains an urgent requirement to develop drugs with efficient anticancer activity suitable for treating cSCC and to overcome the skin physiological barrier to improve the efficiency of drug delivery to the tumor. Results We introduced lycorine (LR) into the topical treatment for cSCC and developed a cell-penetrating peptide (CPP)-modified cationic transfersome gel loaded with lycorine-oleic acid ionic complex (LR-OA) (LR@DTFs-CPP Gel) and investigated its topical therapeutic effects on cSCC. The anti-cSCC effects of LR and skin penetration of LR-OA transfersomes were confirmed. Simultaneously, cationic lipids and modification of R5H3 peptide of the transfersomes further enhanced the permeability of the skin and tumor as well as the effective delivery of LR to tumor cells. Conclusions Topical treatment of cSCC-xenografted nude mice with LR@DTFs-CPP Gel showed effective anticancer properties with high safety. This novel formulation provides novel insights into the treatment and pathogenesis of cSCC

    Monitoring the Surface Elevation Changes of a Monsoon Temperate Glacier with Repeated UAV Surveys, Mainri Mountains, China

    No full text
    Due to the deep valleys, steep mountains and the influence of the Indian monsoon on the Mainri Mountains (Yunnan Province, China), it is difficult to estimate glacier change from microwave and optical remote sensing. To bridge the gap between low-quality space-borne remote sensing and scarce in situ measurements, airborne remote sensing, such as unmanned aerial vehicles (UAVs), may provide a remarkable opportunity to monitor glacier change with high-quality tools. To determine monsoon temperate glacier change, three UAV surveys were conducted on the Melang Glacier in the Mainri Mountains in November 2019, April 2020 and November 2020. Then, glacier surface elevation changes were estimated from UAV orthophotos and DSMs. High accumulation and high ablation (+10.5 m and −13.5 m) were observed in the accumulation period and ablation period, with a mean surface elevation change of −3.0 m in the surveyed glacier area from November 2019 to November 2020. The avalanche, debris cover, ice cliffs and proglacial lake resulted in a heterogeneous pattern of glacier surface elevation changes. Given that the glacier is more sensitive to temperature, the Melang Glacier may have experienced a substantial recession and mass loss in the past few decades. This study provides a more appropriate approach for monitoring the changes in a temperate glacier in the Mainri Mountains

    Monitoring the Surface Elevation Changes of a Monsoon Temperate Glacier with Repeated UAV Surveys, Mainri Mountains, China

    No full text
    Due to the deep valleys, steep mountains and the influence of the Indian monsoon on the Mainri Mountains (Yunnan Province, China), it is difficult to estimate glacier change from microwave and optical remote sensing. To bridge the gap between low-quality space-borne remote sensing and scarce in situ measurements, airborne remote sensing, such as unmanned aerial vehicles (UAVs), may provide a remarkable opportunity to monitor glacier change with high-quality tools. To determine monsoon temperate glacier change, three UAV surveys were conducted on the Melang Glacier in the Mainri Mountains in November 2019, April 2020 and November 2020. Then, glacier surface elevation changes were estimated from UAV orthophotos and DSMs. High accumulation and high ablation (+10.5 m and −13.5 m) were observed in the accumulation period and ablation period, with a mean surface elevation change of −3.0 m in the surveyed glacier area from November 2019 to November 2020. The avalanche, debris cover, ice cliffs and proglacial lake resulted in a heterogeneous pattern of glacier surface elevation changes. Given that the glacier is more sensitive to temperature, the Melang Glacier may have experienced a substantial recession and mass loss in the past few decades. This study provides a more appropriate approach for monitoring the changes in a temperate glacier in the Mainri Mountains

    Additional file 2 of Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma

    No full text
    Additional file 2: Figure S2. Representative image of cell-penetrating peptide modified lycorine transfersomes with components of 1,2-dioleoyl-3-trimethylammonium-propane and sodium cholate hydrate (LR@DTFs-CPP)

    Additional file 7 of Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma

    No full text
    Additional file 7: Figure S7. Histopathology of tissue sections of the skin with cutaneous squamous cell carcinoma (cSCC) tumor stained using hematoxylin and eosin after 14 days of treatment. Scale bar: 400 μm
    corecore