46 research outputs found

    Alterations in brain structure and function associated with pediatric growth hormone deficiency: A multi-modal magnetic resonance imaging study

    Get PDF
    IntroductionPediatric growth hormone deficiency (GHD) is a disease resulting from impaired growth hormone/insulin-like growth factor-1 (IGF-1) axis but the effects of GHD on children’s cognitive function, brain structure and brain function were not yet fully illustrated.MethodsFull Wechsler Intelligence Scales for Children, structural imaging, diffusion tensor imaging, and resting-state functional magnetic resonance imaging were assessed in 11 children with GHD and 10 matched healthy controls.Results(1) The GHD group showed moderate cognitive impairment, and a positive correlation existed between IGF-1 levels and cognitive indices. (2) Mean diffusivity was significantly increased in both corticospinal tracts in GHD group. (3) There were significant positive correlations between IGF-1 levels and volume metrics of left thalamus, left pallidum and right putamen but a negative correlation between IGF-1 levels and cortical thickness of the occipital lobe. And IGF-1 levels negatively correlated with fractional anisotropy in the superior longitudinal fasciculus and right corticospinal tract. (4) Regional homogeneity (ReHo) in the left hippocampus/parahippocampal gyrus was negatively correlated with IGF-1 levels; the amplitude of low-frequency fluctuation (ALFF) and ReHo in the paracentral lobe, postcentral gyrus and precentral gyrus were also negatively correlated with IGF-1 levels, in which region ALFF fully mediates the effect of IGF-1 on working memory index.ConclusionMultiple subcortical, cortical structures, and regional neural activities might be influenced by serum IGF-1 levels. Thereinto, ALFF in the paracentral lobe, postcentral gyrus and precentral gyrus fully mediates the effect of IGF-1 on the working memory index

    Well-Wrapped Li-Rich Layered Cathodes by Reduced Graphene Oxide towards High-Performance Li-Ion Batteries

    No full text
    Layered lithium-rich manganese oxide (LLO) cathode materials have attracted much attention for the development of high-performance lithium-ion batteries. However, they have suffered seriously from disadvantages, such as large irreversible capacity loss during the first cycle, discharge capacity decaying, and poor rate performance. Here, a novel method was developed to coat the surface of 0.4Li2MnO3∙0.6LiNi1/3Co1/3Mn1/3O2 cathode material with reduced graphene-oxide (rGO) in order to address these drawbacks, where a surfactant was used to facilitate the well-wrapping of rGO. As a result, the modified LLO (LLO@rGO) cathode exhibits superior electrochemical performance including cycling stability and rate capability compared to the pristine LLO cathode. In particular, the LLO@rGO with a 0.5% rGO content can deliver a high discharge capacity of 166.3 mAh g−1 at a 5C rate. The novel strategy developed here can provide a vital approach to inhibit the undesired side reactions and structural deterioration of Li-rich cathode materials, and should be greatly useful for other cathode materials to improve their electrochemical performance

    Root zone-specific localization of AMTs determines ammonium transport pathways and nitrogen allocation to shoots.

    No full text
    In plants, nutrient provision of shoots depends on the uptake and transport of nutrients across the root tissue to the vascular system. Nutrient delivery to the vasculature is mediated via the apoplastic transport pathway (ATP), which uses the free space in the cell walls and is controlled by apoplastic barriers and nutrient transporters at the endodermis, or via the symplastic transport pathway (STP). However, the relative importance of these transport routes remains elusive. Here, we show that the STP, mediated by the epidermal ammonium transporter 1;3 (AMT1;3), dominates the radial movement of ammonium across the root tissue when external ammonium is low, whereas apoplastic transport controlled by AMT1;2 at the endodermis prevails at high external ammonium. Then, AMT1;2 favors nitrogen (N) allocation to the shoot, revealing a major importance of the ATP for nutrient partitioning to shoots. When an endodermal bypass was introduced by abolishing Casparian strip (CS) formation, apoplastic ammonium transport decreased. By contrast, symplastic transport was increased, indicating synergism between the STP and the endodermal bypass. We further establish that the formation of apoplastic barriers alters the cell type-specific localization of AMTs and determines STP and ATP contributions. These results show how radial transport pathways vary along the longitudinal gradient of the root axis and contribute to nutrient partitioning between roots and shoots

    A critical role of AMT2;1 in root-to-shoot translocation of ammonium in Arabidopsis

    Get PDF
    Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to 15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amt1;1 amt1;2 amt1;3 amt2;1 quadruple deletion line (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced 15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar substrate concentrations. We conclude that besides contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium. These functions depend on its cell type-specific expression in response to the plant nutritional status and to local ammonium gradients

    Optimization of ultrasound-assisted cellulase degradation method on the extraction of mulberry leaf protein and its effect on the functional characteristics

    No full text
    The mulberry leaf protein extracted by ultrasound-assisted cellulase degradation (UACD) method was optimized with the protein dissolution amount (PDA) as the index. The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy of extracted mulberry leaf protein were measured. The functional characteristics of protein extracted by the UACD method were evaluated. Results showed that the extraction condition was optimized and adjusted to the following parameters: pH value of 7.20, ultrasound temperature of 35.00 °C, enzyme dosage of 4.20% and ultrasound time of 10.00 min. Under these optimized conditions, the experimental verification value of PDA was 13.87 mg/mL, which was approaching to the predicted value of 13.54 mg/mL. The analysis results of FTIR showed that after extraction by the UACD method, the mulberry leaf protein with the vibrational peak of ester carbonyl (C = O) absorption peak (1734.66 cm−1) disappeared. The α-helix content of protein extracted by the UACD decreased by 8.13%, and the β-turn and random coil content of protein increased by 20.22% and 18.79%, respectively, compared to that of the blank. The microstructure of mulberry leaf protein showed that the UACD method could break the dense structure of protein raw materials, reduce the average size of proteins and increase the specific surface area and roughness of proteins. According to the results of functional characteristics, the mulberry leaf protein extracted by the UACD method presented the highest enzymolysis properties and solubility, which was beneficial for the application in the food industry. In conclusion, the UACD method was a very effective way to extract protein from mulberry leaf

    Serum Levels of Asprosin, a Novel Adipokine, Are Significantly Lowered in Patients with Acromegaly

    No full text
    Background. Asprosin is a novel identified adipokine secreted mainly by white adipose tissue, which is elevated in metabolic diseases such as diabetes and obesity. Acromegaly is a syndrome caused by pituitary growth hormone (GH) cell adenoma with excessive GH secretion. Serum adipocytokines levels may be involved in abnormal glycolipid metabolism in acromegaly patients. Objectives. To investigate serum asprosin levels in acromegaly patients and its correlation with high GH levels and glucolipid metabolic parameters. Methods. A retrospective case-control study was conducted and 68 acromegaly patients and 121 controls were included in this study. Clinical information and laboratory examinations were collected and serum asprosin levels were measured by commercial ELISA kits. Results. Serum asprosin levels in acromegaly patients were significantly lower than controls (P<0.001). Serum asprosin levels in patients with the course of acromegaly ≥5 years (compared with <5 years), high area under curve of growth hormone (GH-AUC) after 75 g oral glucose tolerance test (OGTT) (compared with low GH-AUC patients), and high IGF-1 SDS group (compared with low IGF-1 SDS group) were significantly reduced (all P<0.05). Serum asprosin levels in acromegaly patients were negatively correlated with the course of acromegaly, IGF-1 SDS, nadir growth hormone value (GH-Nadir), and GH-AUC after OGTT. Multiple stepwise linear regression indicated that acromegaly was an independent influencing factor of serum asprosin levels. According to serum asprosin levels tertiles, the risk of acromegaly in the lowest group was 2.67 times higher than the highest group (OR = 3.665, 95% CI 1.677 ∼ 8.007, P=0.001), and the increased risk of the lowest group still existed after adjusting for gender, age, BMI, and TC (Model 2). Conclusions. Serum asprosin levels in acromegaly patients are lowered, which may be related to increased blood glucose and reduced body fat mass caused by long-term high GH levels exposure

    Distinct AMPK-Mediated FAS/HSL Pathway Is Implicated in the Alleviating Effect of Nuciferine on Obesity and Hepatic Steatosis in HFD-Fed Mice

    No full text
    Nuciferine (Nuci), the main aporphine alkaloid component in lotus leaf, was reported to reduce lipid accumulation in vitro. Herein we investigated whether Nuci prevents obesity in high fat diet (HFD)-fed mice and the underlying mechanism in liver/HepG2 hepatocytes and epididymal white adipose tissue (eWAT) /adipocytes. Male C57BL/6J mice were fed with HFD supplemented with Nuci (0.10%) for 12 weeks. We found that Nuci significantly reduced body weight and fat mass, improved glycolipid profiles, and enhanced energy expenditure in HFD-fed mice. Nuci also ameliorated hepatic steatosis and decreased the size of adipocytes. Furthermore, Nuci remarkably promoted the phosphorylation of AMPK, suppressed lipogenesis (SREBP1, FAS, ACC), promoted lipolysis (HSL, ATGL), and increased the expressions of adipokines (FGF21, ZAG) in liver and eWAT. Besides, fatty acid oxidation in liver and thermogenesis in eWAT were also activated by Nuci. Similar results were further observed at cellular level, and these beneficial effects of Nuci in cells were abolished by an effective AMPK inhibitor compound C. In conclusion, Nuci supplementation prevented HFD-induced obesity, attenuated hepatic steatosis, and reduced lipid accumulation in liver/hepatocytes and eWAT/adipocytes through regulating AMPK-mediated FAS/HSL pathway. Our findings provide novel insight into the clinical application of Nuci in treating obesity and related complications
    corecore