14 research outputs found

    Conformation change of trypsin induced by acteoside as studied using multiple spectroscopic and molecular docking methods

    No full text
    The interaction of trypsin with acteoside was studied using ultraviolet visible absorption, fluorescence, synchronous fluorescence, circular dichroism techniques, along with molecular docking method. The fluorescence experiments indicated that acteoside quenched the intrinsic fluorescence of trypsin via a combined quenching process (static and dynamic quenching). The binding constant of acteoside to trypsin obtained was 2.50 × 105 L mol−1 at 298 K and the number of binding site was about one under the same experimental condition. The thermodynamic functions ΔH° and ΔS° of the binding process were 8.79 kJ mol−1 and 132.58 J mol−1 K−1, respectively, which indicated that the hydrophobic force was the main acting force between them. Ultraviolet–visible, synchronous fluorescence together with circular dichroism spectra studies demonstrated that the interaction of acteoside with trypsin lead to a loosening and unfolding of the protein backbone with partial β-sheet structures being transformed into α-helix structures. All these experimental results were validated and explained reasonably by docking studies. And the molecular docking results further illustrated that besides hydrophobic forces, hydrogen bonds also played an important role in the stabilization of the acteoside–trypsin complex. Results from this study should be helpful to make full use of acteoside in the food industry and be useful to the design of the drugs for the diseases related to trypsin

    Efficacy and safety analysis of hypofractionated and conventional fractionated radiotherapy in postoperative breast cancer patients

    No full text
    Abstract Objectives In this meta-analysis, we conducted a comparative analysis of the safety and efficacy of hypofractionated and conventional fractionated radiotherapy in individuals who had undergone surgery for breast cancer. Methods This study involved a systematic and independent review of relevant research articles published in reputable databases such as PubMed, Embase, Cochrane Library, and Web of Science. Two investigators conducted the review, which included studies published up to January 3, 2023. The quality of the eligible studies was evaluated and data were extracted using Review Manager software 5.4 (RevMan 5.4) to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results The analysis comprised 35 studies and encompassed a collective sample of 18,246 individuals diagnosed with breast cancer. We did not find a statistically significant disparity in efficacy between conventional fractionated (CF) radiotherapy and hypofractionated (HF) radiotherapy regarding local recurrence (LR; OR = 0.91, 95% CI: 0.76–1.09, P = 0.30), disease-free survival (DFS; OR = 1.20, 95% CI: 1.01–1.42, P = 0.03), and overall survival (OS; OR = 1.08, 95% CI: 0.93–1.26, P = 0.28). Concerning safety, there was no significant difference between the HF and CF regimens in terms of breast pain, breast atrophy, lymphedema, pneumonia, pulmonary fibrosis, telangiectasia, and cardiotoxicity. However, the HF regimen resulted in lower skin toxicity (OR = 0.43, 95% CI: 0.33—0.55, P < 0.01) and improved patient fatigue outcomes (OR = 0.73, 95% CI: 0.60 – 0.88, P < 0.01). Conclusions Although there is no substantial difference in LR, DFS, OS, or many other side effects between the HF and CF regimens, the HF regimen reduces skin toxicity and relieves patient fatigue. If these two issues need to be addressed in clinical situations, the HF regimen may be a superior alternative to conventional radiotherapy in postoperative breast cancer patients

    Cardiorespiratory dose comparison among six radiotherapy regimens for patients with left-sided breast cancer

    No full text
    Abstract There is uncertainty regarding the benefits and drawbacks of various radiation protocols for the treatment of left-sided breast cancer. To address this issue, we conducted a Bayesian network analysis. First, we searched several electronic databases for eligible literature. Next, we pooled the data from twelve studies concerning three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), combined with either deep inspiratory breath-holding (DIBH) or free-breathing (FB) modalities. The integrated cardiac and pulmonary dosimetric indexes for all included treatments were compared using Bayesian networks. A direct meta-analysis indicated that for the two methods of 3D-CRT and IMRT, DIBH technology was more effective than FB in reducing the radiation dose to the heart and lungs. Additionally, according to the network results, DIBH was superior to FB in all six treatment options, regardless of whether the plan was 3D-CRT, IMRT, or VMAT. Besides, the combined data indicated that the FB-3D-CRT regimen had the weakest dosimetric advantage of all the treatments. Excluding FB-3D-CRT, each of the other five treatments had its own specific benefits. This is the first Bayesian study of several radiotherapy regimens for breast cancer patients on the left side, and the findings can be used to select appropriate radiotherapy programs for breast cancer patients

    A method for selecting reference beam model of VMAT plans with three 6MV beam-matched linear accelerators during radiation oncology

    No full text
    Abstract Our objective was to provide a method for selecting reference beam model and evaluating the dosimetric accuracy of volumetric modulated arc therapy (VMAT) plans delivered on three Elekta beam-matched linacs during radiation oncology. Beam data was measured on three beam-matched linacs including Synergy1, Synergy2 and VersaHD. For eighteen lung and esophagus cases, fifty-four plans were generated using VMAT technique with three linac beam models respectively for point dose measurement and three-dimensional dose measurement. Each VMAT plan was executed sequentially on three linacs respectively. Measurement results were compared with treatment planning system (TPS) calculation results for all VMAT plans. Among three beam-matched linacs, discrepancy in beam output factor, percentage depth dose at 5 cm, 10 cm, 20 cm depth and MLC leaf offset are all within 1% except 20 × 20 cm2 and 30 × 30 cm2 field sizes, and discrepancy in beam profile is all within 2%. With comparison between measurement result and TPS calculation result, the absolute dose deviations are within the range of ± 3%, and the gamma passing rates are all over 95% for all VMAT plans, which are within the tolerance of clinical acceptability. Compared with all plans delivered on Synegy1 and VersaHD, the point dose discrepancy between measured results and TPS calculated results for plans delivered on Synergy2 is smallest, and the gamma passing rate between measured results and TPS calculated results for plans delivered on Synergy2 is highest. The beam-matched linacs demonstrate good agreement between measurement result and TPS calculation result for VMAT plans. The method can be used for selecting reference beam model for VMAT plans

    Interhemispheric cortical long-term potentiation in the auditory cortex requires heterosynaptic activation of entorhinal projection

    No full text
    Summary: Long-term potentiation (LTP), which underlies learning and memory, can be induced by high-frequency electrical stimulation (HFS or HFES) and is thought to occur at the synapses of efferent projection. Here, the contralateral connectivity in mice auditory cortex was investigated to reveal the fundamental corticocortical connection properties. After HFES, plasticity was not observed at the terminal synapses at the recording site. The optogenetic HFS at the recording site of the interhemispheric cortical projections could not induce LTP, but HFES at the recording site could induce the interhemispheric cortical LTP. Our subsequent results uncovered that it is the cholecystokinin (CCK) released from the entorhino-neocortical pathway induced by HEFS that modulates the neuroplasticity of the afferent projections, including interhemispheric auditory cortical afferents. Our study illustrates a heterosynaptic mechanism as the basis for cortical plasticity. This regulation might contribute new spots for the understanding and treatment of neurological disorders

    Core Outcome Set for Clinical Trials on Coronavirus Disease 2019 (COS-COVID)

    No full text
    Since its outbreak in December 2019, a series of clinical trials on Coronavirus Disease 2019 (COVID-19) have been registered or carried out. However, the significant heterogeneity and less critical outcomes of such trials may be leading to a waste of research resources. This study aimed to develop a core outcome set (COS) for clinical trials on COVID-19 in order to tackle the outcome issues. The study was conducted according to the Core Outcome Measures in Effectiveness Trials (COMET) handbook (version 1.0), a guideline for COS development. A research group was set up that included experts in respiratory and critical medicine, traditional Chinese medicine, evidence-based medicine, clinical pharmacology, and statistics, in addition to medical journal editors. Clinical trial registry websites (chictr.org.cn and clinicaltrials.gov) were searched to retrieve clinical trial protocols and outcomes in order to form an outcome pool. A total of 78 clinical trial protocols on COVID-19 were included and 259 outcomes were collected. After standardization, 132 outcomes were identified within seven different categories, of which 58 were selected to develop a preliminary outcome list for further consensus. After two rounds of Delphi survey and one consensus meeting, the most important outcomes for the different clinical classifications of COVID-19 were identified and determined to constitute the COS for clinical trials on COVID-19 (COS-COVID). The COS-COVID includes one outcome for the mild type (time to 2019-nCoV reverse transcription-polymerase chain reaction (RT-PCR) negativity), four outcomes for the ordinary type (length of hospital stay, composite events, score of clinical symptoms, and time to 2019-nCoV RT-PCR negativity), five outcomes for the severe type (composite events, length of hospital stay, arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (FiO2), duration of mechanical ventilation, and time to 2019-nCoV RT-PCR negativity), one outcome for critical type (all-cause mortality), and one outcome for rehabilitation period (pulmonary function). The COS-COVID is currently the most valuable and practical clinical outcome set for the evaluation of intervention effect, and is useful for evidence assessment and decision-making. With a deepening understanding of COVID-19 and application feedback, the COS-COVID should be continuously updated
    corecore