54 research outputs found

    Quadratic stabilization of distributed parameter systems with norm-bounded time-varying uncertainty

    No full text
    This note focuses on the study of robust HH_\infty control design for a kind of distributed parameter systems in which time-varying norm-bounded uncertainty enters the state and input operators. Through a fixed Lyapunov function, we present a state feedback control which stabilizes the plant and guarantees an HH_\infty norm bound on disturbance attenuation for all admissible uncertainties. In the process, we generalize some known results for finite dimensional linear systems

    The stability and design of nonlinear neural networks

    Get PDF
    AbstractBased on the techniques of singular value decomposition and generalized inverse, two new methods for designing associative memories are presented. The two methods not only guarantee that each given vector is an equilibrium point of the network, but also guarantee the asymptotic stability of the equilibrium points. Examples show the effectiveness of the new methods

    In-plane hyperbolic polariton tuners in terahertz and long-wave infrared regimes

    Full text link
    Development of terahertz (THz) and long-wave infrared (LWIR) technologies is mainly bottlenecked by the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon-polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here {\alpha}-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned {\alpha}-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. This is important to development of THz and LWIR miniaturized devices

    Traditional Chinese medicine residues promote the growth and quality of Salvia miltiorrhiza Bunge by improving soil health under continuous monoculture

    Get PDF
    Continuous monoculture of crops has resulted in reduced yields and quality, as well as soil deterioration. Although traditional Chinese medicine residues (TCMRs) are known to promote plant growth and soil health, few studies have investigated their effectiveness in continuous monoculture soils. Here, we studied the impact of chemical fertilizers (CF) and four TCMRs with antibacterial activities on the growth of S. miltiorrhiza (a widely used medicinal plant in China), accumulation of active ingredients in plants, and soil health under continuous monoculture conditions. Compared with no fertilizer (CK) and CF, fermented Sophora flavescens radix residue (SFRf) and fermented and unfermented Moutan cortex residue (MCRf and MCRu, respectively) resulted in a reduction of the disease index of root rot, while CF did not. The CF and four TCMR treatments increased the accumulation of nitrogen (N) (42.8-124.6% and 17.0-101.7%), phosphorous (P) (19.8-74.7% and 8.3-27.4%), and potassium (K) (104.1-212.0% and 9.3-51.8%) in shoots and roots compared to CK. The differences in nutrient accumulation between the CF and TCMR treatments were statistically insignificant, excepted for the N accumulation in the roots. All fertilization treatments increased plant biomass compared to CK, with increases of 25.57-89.86% and 2.62-35.28% in shoots and roots, respectively. The SFRf treatment exhibited the most significant enhancement in both shoot and root biomass. CF significantly reduced the accumulation of seven active ingredients in roots by 23.90-78.95% compared to CK, whereas each TCMR increased accumulation of certain active ingredients. The TCMR treatments effectively improved the health of deteriorated soil by enhancing soil physicochemical properties, restoring the balance of the microbial community, recruiting beneficial bacteria, and reducing the relative abundance of the pathogen Fusarium. The SFRf treatment exhibited superior performance in improving soil health than other treatments. Overall, the TCMRs outperformed CF in restoring soil health and promoting the yield and quality of S. miltiorrhiza. These findings offer guidance for improving the health of continuous cropping soil and recycling TCMRs

    Adsorption, Desorption, and Thermodynamic Studies of CO2 with High-Amine-Loaded Multiwalled Carbon Nanotubes

    No full text
    Commercially available multiwalled carbon nanotubes (CNTs) were functionalized with a high mass load of 3-aminopropyltriethoxysilane (APTS) to study their behaviors in the cyclic CO(2) adsorption as well as the associated thermodynamic properties. The breakthrough curve showed a fast kinetics of CO(2) adsorption resulting in percentage ratios of working capacity to equilibrium capacity greater than 80%. The adsorption capacity of CNT(APTS) was significantly influenced by the presence of water vapor and reached a maximum of 2.45 mmol/g at a water vapor of 2.2%. The adsorption capacities and the physicochemical properties of CNT(APTS) were preserved through 100 adsorption-desorption cycles displaying the stability of CNT(APTS) during a prolonged cyclic operation. The heat input required to regenerate spent CNT(APTS) was determined, and the result suggests that adsorption process with solid CNT(APTS) is possibly a promising CO(2) capture technology
    corecore