40 research outputs found

    Astragalus Injection for Hypertensive Renal Damage: A Systematic Review

    Get PDF
    Objective. To evaluate the effectiveness of astragalus injection (a traditional Chinese patent medicine) for patients with renal damage induced by hypertension according to the available evidence. Methods. We searched MEDLINE, China National Knowledge Infrastructure (CNKI), Chinese VIP Information, China Biology Medicine (CBM), and Chinese Medical Citation Index (CMCI), and the date of search starts from the first of database to August 2011. No language restriction was applied. We included randomized controlled trials testing astragalus injection against placebo or astragalus injection plus antihypertensive drugs against antihypertensive drugs. Study selection, data extraction, quality assessment, and data analyses were conducted according to the Cochrane review standards. Results. 5 randomized trials (involving 429 patients) were included and the methodological quality was evaluated as generally low. The pooled results showed that astragalus injection was more effective in lowering β2-microglobulin (β2-MG), microalbuminuria (mAlb) compared with placebo, and it was also superior to prostaglandin in lowering blood urea nitrogen (BUN), creatinine clearance rate (Ccr). There were no adverse effects reported in the trials from astragalus injection. Conclusions. Astragalus injection showed protective effects in hypertensive renal damage patients, although available studies are not adequate to draw a definite conclusion due to low quality of included trials. More rigorous clinical trials with high quality are warranted to give high level of evidence

    Andrographolide alleviates paraquat-induced acute lung injury by activating the Nrf2/HO-1 pathway

    Get PDF
    Objective(s): Paraquat (PQ), a highly effective and rapidly non-selective herbicide, mainly targets the lungs and causes acute lung injury (ALI). So far, the scarcity of effective drug candidates against PQ-induced ALI remains a big challenge. Andrographolide (Andro), with its anti-inflammatory and antioxidant activities, has been demonstrated to alleviate ALI. Nevertheless, whether Andro could alleviate the PQ-mediated ALI remains unknown. Therefore, this study will explore the effects as well as the possible mechanism of Andro against ALI caused by PQ. Materials and Methods: C57BL/6J mice were injected with 20 mg/kg PQ intraperitoneally to establish an ALI model. PQ-treated MLE-12 cells were applied to a vitro model. Nuclear factor erythroid like-2 (Nrf2) was knocked out to explore the specific effects of the Nrf2/ Heme oxygenase-1 (OH-1) pathway in the protection of Andro against ALI caused by PQ.Results: Andro significantly reduced lung damage and the ratio of Wet/Dry (W/D) weight, decreased MDA, IL-6, IL-1β, and TNF-ɑ levels, reversed the decrease of CAT and SOD levels, and inhibited apoptosis caused by PQ. Andro obviously increased the ratio of Bcl-2/Bax while reducing caspase-3 and cleaved caspase-3 levels. Furthermore, Andro dramatically elevated the antioxidant proteins Nrf2, NQO-1, and HO-1 levels compared with the PQ group. This experiment demonstrated that Andro reduced ROS and inhibited apoptosis, induced by PQ in MLE-12 cells, by inducing Nrf2/HO-1 pathway activation.Conclusion: Andro effectively ameliorates oxidant stress and apoptosis in ALI caused by PQ, possibly through inducing Nrf2/HO-1 pathway activation

    Convergence of resistance and evolutionary responses in Escherichia coli and Salmonella enterica co-inhabiting chicken farms in China

    Get PDF
    Sharing of genetic elements among different pathogens and commensals inhabiting same hosts and environments has significant implications for antimicrobial resistance (AMR), especially in settings with high antimicrobial exposure. We analysed 661 Escherichia coli and Salmonella enterica isolates collected within and across hosts and environments, in 10 Chinese chicken farms over 2.5 years using novel data-mining methods. Most isolates within same hosts possessed same clinically relevant AMR-carrying mobile genetic elements (plasmids: 70.6%, transposons: 78%), which also showed recent common evolution. Machine learning revealed known and novel AMR-associated mutations and genes underlying resistance to 28 antimicrobials and primarily associated with resistance in E. coli and susceptibility in S. enterica. Many were essential and affected same metabolic processes in both species, albeit with varying degrees of phylogenetic penetration. Multi-modal strategies are crucial to investigate the interplay of mobilome, resistance and metabolism in cohabiting bacteria, especially in ecological settings where community-driven resistance selection occurs

    Human action recognition using similarity degree between postures and spectral learning

    No full text
    In recent years, there has been renewed interest in developing methods for skeleton‐based human action recognition. In this study, the challenging problem of the similarity degree of skeleton‐based human postures is addressed. Human posture is described by screw motions between 3D rigid bodies, which can be seen as a relation matrix of 3D rigid bodies (RMRB3D). A linear subspace, a point of a Grassmannian manifold, is spanned by the orthonormal basis of matrix RMRB3D. A powerful way to compute the similarity degree between postures is researched to solve the geodesic distance between points on the Grassmannian manifold. Then representative postures are extracted through spectral clustering over representative postures. An action will be represented by a symbol sequence generated with a global linear eigenfunction constructed by spectral embedding. Finally, dynamic time warping and hidden Markov model (HMM) are used to classify these action sequences. The experimental evaluations of the proposed method on several challenging 3D action datasets show that the proposed approaches achieve promising results compared with other skeleton‐based human action recognition algorithms

    Dietary glycerol monolaurate improved the growth, activity of digestive enzymes and gut microbiota in zebrafish (Danio rerio)

    No full text
    Microbial recurrent infections and antimicrobial resistance have motivated the researchers to explore bioactive compounds as safe alternative antimicrobials to target pathogenic microorganisms. Interest in finding new biologically active substances to replace conventional antibiotics in aquatic feed has rapidly increased, since the misuse or overuse of antibiotics produced antibiotic resistance. Glycerol monolaurate (GML), has attracted attention of researchers due to its growth-promoting and immunomodulatory potential by exerting beneficial effects on the gut microbiota and host health. This study aimed to evaluate the effects of dietary GML using as a feed additive on the growth performance, blood lipid profile, hepatic lipid deposition, body composition, digestive enzymes, serum anti-inflammatory activities, and gut microbiota of zebrafish. The study’s findings showed that diet supplemented with 750 mg kg−1 of GML, significantly improved the growth performance, feed utilization and intestinal lipase activity, as well as body crude lipid content without inducing hepatic fat accumulation. GML supplementation also promoted the serum anti-inflammatory potential by elevating the level of TGF-β1 and IL-10. Moreover, dietary supplementation of GML positively restructured the intestinal microbial ecology by improving the relative abundance of several favorable bacteria, including Cetobacterium, Shewanella, and Vibrio at the genus level. Conclusively, study’s findings suggest that GML supplementation contributes in improving the growth, digestive enzymes activities, anti-inflammatory potential, and gut microbiota, indicating GML promising potential as a feed additive in aquaculture nutrition

    Mapping Dynamic Urban Land Use Patterns with Crowdsourced Geo-Tagged Social Media (Sina-Weibo) and Commercial Points of Interest Collections in Beijing, China

    No full text
    In fast-growing cities, especially large cities in developing countries, land use types are changing rapidly, and different types of land use are mixed together. It is difficult to assess the land use types in these fast-growing cities in a timely and accurate way. To address this problem, this paper presents a multi-source data mining approach to study dynamic urban land use patterns. Spatiotemporal social media data reveal human activity patterns in different areas, social media text data reflects the topics discussed in different areas, and Points of Interest (POI) reflect the distribution of urban facilities in different regions. Human activity patterns, topics of discussion on social media, and the distribution of urban facilities in different regions were combined and analyzed to infer urban land use patterns. We collected 9.5 million geo-tagged Chinese social media (Sina-Weibo) messages from January 2014 to July 2014 in the urban core areas of Beijing and compared them with 385,792 commercial Points of Interest (POI) from Datatang (a Chinese digital data content provider). To estimate urban land use types and patterns in Beijing, a regular grid of 400 m × 400 m was created to divide the urban core areas into 18,492 cells. By analyzing the temporal frequency trends of social media messages within each cell using K-means clustering algorithm, we identified seven types of land use clusters in Beijing: residential areas, university dormitories, commercial areas, work areas, transportation hubs, and two types of mixed land use areas. Text mining, word clouds, and the distribution analysis of POI were used to verify the estimated land use types successfully. This study can help urban planners create up-to-date land use patterns in an economic way and help us better understand dynamic human activity patterns in a city

    A Microarray-Based Analysis Reveals that a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat.

    No full text
    Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding

    Global Fisheries Responses to Culture, Policy and COVID-19 from 2017 to 2020

    No full text
    Global Fishing Watch (GFW) provides global open-source data collected via automated monitoring of vessels to help with sustainable management of fisheries. Limited previous global fishing effort analyses, based on Automatic Identification System (AIS) data (2017–2020), suggest economic and environmental factors have less influence on fisheries than cultural and political events, such as holidays and closures, respectively. As such, restrictions from COVID-19 during 2020 provided an unprecedented opportunity to explore added impacts from COVID-19 restrictions on fishing effort. We analyzed global fishing effort and fishing gear changes (2017–2019) for policy and cultural impacts, and then compared impacts of COVID-19 lockdowns across several countries (i.e., China, Spain, the US, and Japan) in 2020. Our findings showed global fishing effort increased from 2017 to 2019 but decreased by 5.2% in 2020. We found policy had a greater impact on monthly global fishing effort than culture, with Chinese longlines decreasing annually. During the lockdown in 2020, trawling activities dropped sharply, particularly in the coastal areas of China and Spain. Although Japan did not implement an official lockdown, its fishing effort in the coastal areas also decreased sharply. In contrast, fishing in the Gulf of Mexico, not subject to lockdown, reduced its scope of fishing activities, but fishing effort was higher. Our study demonstrates, by including the dimensions of policy and culture in fisheries, that large data may materially assist decision-makers to understand factors influencing fisheries’ efforts, and encourage further marine interdisciplinary research. We recommend the lack of data for small-scale Southeast Asian fisheries be addressed to enable future studies of fishing drivers and impacts in this region

    Global Fisheries Responses to Culture, Policy and COVID-19 from 2017 to 2020

    No full text
    Global Fishing Watch (GFW) provides global open-source data collected via automated monitoring of vessels to help with sustainable management of fisheries. Limited previous global fishing effort analyses, based on Automatic Identification System (AIS) data (2017–2020), suggest economic and environmental factors have less influence on fisheries than cultural and political events, such as holidays and closures, respectively. As such, restrictions from COVID-19 during 2020 provided an unprecedented opportunity to explore added impacts from COVID-19 restrictions on fishing effort. We analyzed global fishing effort and fishing gear changes (2017–2019) for policy and cultural impacts, and then compared impacts of COVID-19 lockdowns across several countries (i.e., China, Spain, the US, and Japan) in 2020. Our findings showed global fishing effort increased from 2017 to 2019 but decreased by 5.2% in 2020. We found policy had a greater impact on monthly global fishing effort than culture, with Chinese longlines decreasing annually. During the lockdown in 2020, trawling activities dropped sharply, particularly in the coastal areas of China and Spain. Although Japan did not implement an official lockdown, its fishing effort in the coastal areas also decreased sharply. In contrast, fishing in the Gulf of Mexico, not subject to lockdown, reduced its scope of fishing activities, but fishing effort was higher. Our study demonstrates, by including the dimensions of policy and culture in fisheries, that large data may materially assist decision-makers to understand factors influencing fisheries’ efforts, and encourage further marine interdisciplinary research. We recommend the lack of data for small-scale Southeast Asian fisheries be addressed to enable future studies of fishing drivers and impacts in this region
    corecore