163 research outputs found

    Optimizing the design of nanostructures for improved thermal conduction within confined spaces

    Get PDF
    Maintaining constant temperature is of particular importance to the normal operation of electronic devices. Aiming at the question, this paper proposes an optimum design of nanostructures made of high thermal conductive nanomaterials to provide outstanding heat dissipation from the confined interior (possibly nanosized) to the micro-spaces of electronic devices. The design incorporates a carbon nanocone for conducting heat from the interior to the exterior of a miniature electronic device, with the optimum diameter, D0, of the nanocone satisfying the relationship: D02(x) ∝ x1/2 where x is the position along the length direction of the carbon nanocone. Branched structure made of single-walled carbon nanotubes (CNTs) are shown to be particularly suitable for the purpose. It was found that the total thermal resistance of a branched structure reaches a minimum when the diameter ratio, β* satisfies the relationship: β* = γ-0.25bN-1/k*, where γ is ratio of length, b = 0.3 to approximately 0.4 on the single-walled CNTs, b = 0.6 to approximately 0.8 on the multiwalled CNTs, k* = 2 and N is the bifurcation number (N = 2, 3, 4 ...). The findings of this research provide a blueprint in designing miniaturized electronic devices with outstanding heat dissipation

    Quantum Sized Zinc Oxide Immobilized on Bentonite Clay and Degradation of C.I. Acid Red 35 in Aqueous under Ultraviolet Light

    Get PDF
    Nano-ZnO supported on bentonite was prepared to form composite photocatalyst by sol-gel method. The photocatalyst was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). C.I. Acid Red 35 was used as simulating contaminant to be treated by ultraviolet light synergistic with nano-ZnO/bentonite. The results show that 5.7 nm ZnO particle was acquired and uniformly dispersed on the surface of the bentonite at calcination temperature of 200°C. The removal of C.I. Acid Red 35 could reach 84.9% after 200 min under optimum ZnO/bentonite dosage of 0.6 g L−1. The 60% ZnO content in ZnO/bentonite composite exhibited a great photocatalytic activity to treat C.I. Acid Red 35. The photocatalytic process followed pseudo-first-order kinetics and the best apparent rate constant was 0.00927 min−1 with correlation coefficient (R2) of above 0.98

    Chlorpromazine Protects Against Apoptosis Induced by Exogenous Stimuli in the Developing Rat Brain

    Get PDF
    Background: Chlorpromazine (CPZ), a commonly used antipsychotic drug, was found to play a neuroprotective role in various models of toxicity. However, whether CPZ has the potential to affect brain apoptosis in vivo is still unknown. The purpose of this study was to investigate the potential effect of CPZ on the apoptosis induced by exogenous stimuli. Methodology: The ethanol treated infant rat was utilized as a valid apoptotic model, which is commonly used and could trigger robust apoptosis in brain tissue. Prior to the induction of apoptosis by subcutaneous injection of ethanol, 7-day-old rats were treated with CPZ at several doses (5 mg/kg, 10 mg/kg and 20 mg/kg) by intraperitoneal injection. Apoptotic cells in the brain were measured using TUNEL analysis, and the levels of cleaved caspase-3, cytochrome c, the pro-apoptotic factor Bax and the anti-apoptotic factor Bcl-2 were assessed by immunostaining or western blot. Findings: Compared to the group injected with ethanol only, the brains of the CPZ-pretreated rats had fewer apoptotic cells, lower expression of cleaved caspase-3, cytochrome c and Bax, and higher expression of Bcl-2. These results demonstrate that CPZ could prevent apoptosis in the brain by regulating the mitochondrial pathway. Conclusions: CPZ exerts an inhibitory effect on apoptosis induced by ethanol in the rat brain, intimating that it may offer
    corecore