120 research outputs found

    Layer-Wise Cross-View Decoding for Sequence-to-Sequence Learning

    Full text link
    In sequence-to-sequence learning, the decoder relies on the attention mechanism to efficiently extract information from the encoder. While it is common practice to draw information from only the last encoder layer, recent work has proposed to use representations from different encoder layers for diversified levels of information. Nonetheless, the decoder still obtains only a single view of the source sequences, which might lead to insufficient training of the encoder layer stack due to the hierarchy bypassing problem. In this work, we propose layer-wise cross-view decoding, where for each decoder layer, together with the representations from the last encoder layer, which serve as a global view, those from other encoder layers are supplemented for a stereoscopic view of the source sequences. Systematic experiments show that we successfully address the hierarchy bypassing problem and substantially improve the performance of sequence-to-sequence learning with deep representations on diverse tasks.Comment: 9 pages, 6 figure

    Aligning Source Visual and Target Language Domains for Unpaired Video Captioning

    Full text link
    Training supervised video captioning model requires coupled video-caption pairs. However, for many targeted languages, sufficient paired data are not available. To this end, we introduce the unpaired video captioning task aiming to train models without coupled video-caption pairs in target language. To solve the task, a natural choice is to employ a two-step pipeline system: first utilizing video-to-pivot captioning model to generate captions in pivot language and then utilizing pivot-to-target translation model to translate the pivot captions to the target language. However, in such a pipeline system, 1) visual information cannot reach the translation model, generating visual irrelevant target captions; 2) the errors in the generated pivot captions will be propagated to the translation model, resulting in disfluent target captions. To address these problems, we propose the Unpaired Video Captioning with Visual Injection system (UVC-VI). UVC-VI first introduces the Visual Injection Module (VIM), which aligns source visual and target language domains to inject the source visual information into the target language domain. Meanwhile, VIM directly connects the encoder of the video-to-pivot model and the decoder of the pivot-to-target model, allowing end-to-end inference by completely skipping the generation of pivot captions. To enhance the cross-modality injection of the VIM, UVC-VI further introduces a pluggable video encoder, i.e., Multimodal Collaborative Encoder (MCE). The experiments show that UVC-VI outperforms pipeline systems and exceeds several supervised systems. Furthermore, equipping existing supervised systems with our MCE can achieve 4% and 7% relative margins on the CIDEr scores to current state-of-the-art models on the benchmark MSVD and MSR-VTT datasets, respectively.Comment: Published at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Prophet Attention: Predicting Attention with Future Attention for Image Captioning

    Full text link
    Recently, attention based models have been used extensively in many sequence-to-sequence learning systems. Especially for image captioning, the attention based models are expected to ground correct image regions with proper generated words. However, for each time step in the decoding process, the attention based models usually use the hidden state of the current input to attend to the image regions. Under this setting, these attention models have a "deviated focus" problem that they calculate the attention weights based on previous words instead of the one to be generated, impairing the performance of both grounding and captioning. In this paper, we propose the Prophet Attention, similar to the form of self-supervision. In the training stage, this module utilizes the future information to calculate the "ideal" attention weights towards image regions. These calculated "ideal" weights are further used to regularize the "deviated" attention. In this manner, image regions are grounded with the correct words. The proposed Prophet Attention can be easily incorporated into existing image captioning models to improve their performance of both grounding and captioning. The experiments on the Flickr30k Entities and the MSCOCO datasets show that the proposed Prophet Attention consistently outperforms baselines in both automatic metrics and human evaluations. It is worth noticing that we set new state-of-the-arts on the two benchmark datasets and achieve the 1st place on the leaderboard of the online MSCOCO benchmark in terms of the default ranking score, i.e., CIDEr-c40.Comment: Accepted by NeurIPS 202

    Contrastive Attention for Automatic Chest X-ray Report Generation

    Full text link
    Recently, chest X-ray report generation, which aims to automatically generate descriptions of given chest X-ray images, has received growing research interests. The key challenge of chest X-ray report generation is to accurately capture and describe the abnormal regions. In most cases, the normal regions dominate the entire chest X-ray image, and the corresponding descriptions of these normal regions dominate the final report. Due to such data bias, learning-based models may fail to attend to abnormal regions. In this work, to effectively capture and describe abnormal regions, we propose the Contrastive Attention (CA) model. Instead of solely focusing on the current input image, the CA model compares the current input image with normal images to distill the contrastive information. The acquired contrastive information can better represent the visual features of abnormal regions. According to the experiments on the public IU-X-ray and MIMIC-CXR datasets, incorporating our CA into several existing models can boost their performance across most metrics. In addition, according to the analysis, the CA model can help existing models better attend to the abnormal regions and provide more accurate descriptions which are crucial for an interpretable diagnosis. Specifically, we achieve the state-of-the-art results on the two public datasets.Comment: Appear in Findings of ACL 2021 (The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)

    Research on Acquisition and Communication Technology of Marine Equipment Fault Diagnosis Information for Vessels in Inland Rivers

    Get PDF
    Abstract: This study describes a system for the analysis of the fault diagnosis of marine equipments in inland rivers. Since the normal operation of the marine equipments significantly influences the ship safety, this study develops an efficient fault diagnosis information system for the condition monitoring and fault diagnosis of marine equipments. In this new system, field bus and ship-to-shore communication technologies have been integrated for the fault diagnosis information acquisition. Then the application of network bus, including CAN and RS485, has been employed to connect the fault diagnosis information with Ethernet in the ship. Lastly, for the real time and wireless transmission of the fault information, the Automatic Identification System (AIS) technology has been adopted to provide accurate and reliable fault diagnosis information transmission from ships to onshore diagnosis center. A comprehensive study of the application of proposed fault diagnosis information system has been implemented for remote diagnosis of marine equipments. The analysis results demonstrate that the newly developed fault diagnosis information system can enhance the fault diagnosis precision and hence is competent for the condition monitoring and fault diagnosis of marine equipments in inland rivers
    • …
    corecore