19 research outputs found

    Bi-collinear antiferromagnetic order in the tetragonal α\alpha-FeTe

    Full text link
    By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal α\alpha-FeTe is in a bi-collinear antiferromagnetic state, in which the Fe local moments (∼2.5μB\sim2.5\mu_B) are ordered ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square lattice. This bi-collinear order results from the interplay among the nearest, next nearest, and next next nearest neighbor superexchange interactions J1J_1, J2J_2, and J3J_3, mediated by Te 5p5p-band. In contrast, the ground state of α\alpha-FeSe is in the collinear antiferromagnetic order, similar as in LaFeAsO and BaFe2_2As2_2.Comment: 5 pages and 5 figure

    Effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks

    Get PDF
    Exogenous supplementation of guanidinoacetic acid can mechanistically regulate the energy distribution in muscle cells. This study aimed to investigate the effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. We randomly divided 480 42 days-old female Jiaji ducks into four groups with six replicates and 20 ducks for each replicate. The control group was fed the basal diet, and the experimental groups were fed the basal diet with 400, 600, and 800 mg/kg (GA400, GA600, and GA800) guanidinoacetic acid, respectively. Compared with the control group, (1) the total cholesterol (p = 0.0262), triglycerides (p = 0.0357), malondialdehyde (p = 0.0452) contents were lower in GA400, GA600 and GA800 in the liver; (2) the total cholesterol (p = 0.0365), triglycerides (p = 0.0459), and malondialdehyde (p = 0.0326) contents in breast muscle were decreased in GA400, GA600 and GA800; (3) the high density lipoprotein (p = 0.0356) and apolipoprotein-A1 (p = 0.0125) contents were increased in GA600 in the liver; (4) the apolipoprotein-A1 contents (p = 0.0489) in breast muscle were higher in GA600 and GA800; (5) the lipoprotein lipase contents (p = 0.0325) in the liver were higher in GA600 and GA800; (6) the malate dehydrogenase contents (p = 0.0269) in breast muscle were lower in GA400, GA600, and GA800; (7) the insulin induced gene 1 (p = 0.0326), fatty acid transport protein 1 (p = 0.0412), and lipoprotein lipase (p = 0.0235) relative expression were higher in GA400, GA600, and GA800 in the liver; (8) the insulin induced gene 1 (p = 0.0269), fatty acid transport protein 1 (p = 0.0234), and lipoprotein lipase (p = 0.0425) relative expression were increased in GA400, GA600, and GA800 in breast muscle. In this study, the optimum dosage of 600 mg/kg guanidinoacetic acid improved the liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks

    Morphological Characterization of Metamorphosis in Stamens of <i>Anemone barbulata</i> Turcz. (Ranunculaceae)

    No full text
    The morphological characteristics of metamorphosis in stamens of Anemone barbulata Turcz. were investigated using morphological and histological analyses. The results showed that stamens were transformed into either white sepaloid organs or more frequently green leaflike structures with successive variations. The extreme metamorphic stamen was represented as a three-lobed leaflike structure with a long stalk, highly consistent with the morphological characters of the normal leaves of the plant. It was hypothesized that the connective and two pollen sacs of the anther were transformed into the three lobes of the metamorphosed stamen, respectively. The depression and circinate stages were identified as the important and necessary processes in the transformation of stamens from axial to foliar organs, suggesting probably the alternative evolutionary process of the formation of anthers derived from foliar organs. The morphological traces of leaf, sepal, and carpel observed in the metamorphosed stamens suggested the homeotic transformations among these organs. The foliar stage in the ancestral stamens of angiosperms was reflected ontogenically in the metamorphosed stamens of A. barbulata. Our findings of a series of metamorphic stamens probably represent the morphological evidence to support the hypothesis that the flowers of angiosperms were derived from metamorphic leaves with the progressive development mode in the evolution of floral organs

    Maternal Supplementation with Ornithine Promotes Placental Angiogenesis and Improves Intestinal Development of Suckling Piglets

    No full text
    The blood vessels of the placenta are crucial for fetal growth. Here, lower vessel density and ornithine (Orn) content were observed in placentae for low-birth-weight fetuses versus normal-birth-weight fetuses at day 75 of gestation. Furthermore, the Orn content in placentae decreased from day 75 to 110 of gestation. To investigate the role of Orn in placental angiogenesis, 48 gilts (Bama pig) were allocated into four groups. The gilts in the control group were fed a basal diet (CON group), while those in the experimental groups were fed a basal diet supplemented with 0.05% Orn (0.05% Orn group), 0.10% Orn (0.10% Orn group), and 0.15% Orn (0.15% Orn group), respectively. The results showed that 0.15% Orn and 0.10% Orn groups exhibited increased birth weight of piglets compared with the CON group. Moreover, the 0.15% Orn group was higher than the CON group in the blood vessel densities of placenta. Mechanistically, Orn facilitated placental angiogenesis by regulating vascular endothelial growth factor-A (VEGF-A). Furthermore, maternal supplementation with 0.15% Orn during gestation increased the jejunal and ileal villi height and the concentrations of colonic propionate and butyrate in suckling piglets. Collectively, these results showed that maternal supplementation with Orn promotes placental angiogenesis and improves intestinal development of suckling piglets

    Porcine intestinal antimicrobial peptide as an in-feed antibiotic alternative improves intestinal digestion and immunity by shaping the gut microbiota in weaned piglets

    No full text
    Antibiotic resistance of pathogens, which is caused by the abuse of in-feed antibiotics, threatens the sustainable development of livestock production. The present study aimed to investigate the efficiency of porcine intestinal antimicrobial peptide (PIAP) as an alternative to in-feed antibiotics in terms of growth performance, intestinal morphology, digestive enzymes and immunity, and microbiota community of the post-weaning piglets. A total of 204 piglets (Duroc × Landrace × Yorkshire, weaned at 28 d age) with a similar body weight of 7.97 ± 1.04 kg were randomly allocated to 4 groups (51 piglets per group): (1) control group: basal diet; (2) AB group: antibiotic, basal diet + chlortetracycline (1000 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37); (3) P1 group: basal diet + a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37); (4) P2 group, basal diet + a relatively high dose of PIAP (600 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37). The results showed that serum indicators of hepatocyte damage and relative organ weight were not affected by these treatments (P > 0.05). Compared with the AB treatment, the P1 treatment remarkably decreased jejunal crypt depth and increased jejunal and ileal villus height:crypt depth ratio (P < 0.05). The values of jejunal maltase, lactase, sucrase, intestinal alkaline phosphatase, and secretory immunoglobulin A (SIgA) in the P1 group were sharply increased compared with those in the control and P2 groups (P < 0.05). Compared with the control group, the P1 group decreased serum concentrations of D-lactate, diamine oxidase, and endotoxin (P < 0.05), and increased the abundance of Lactobacillus reuteri (P < 0.05) in the colonic feces. Furthermore, there was a positive correlation between the abundance of L. reuteri and the concentrations of maltase, lactase, sucrase, and SIgA (P < 0.05). Collectively, dietary supplementation with a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37) demonstrates beneficial effects on intestinal morphology, digestive enzymes, immunity, and permeability by shaping the gut microbiota composition in weaned piglets. This study will provide a valuable reference for using PIAP as an in-feed antibiotic alternative in swine production

    Effects of Dietary Probiotics and Acidifiers on the Production Performance, Colostrum Components, Serum Antioxidant Activity and Hormone Levels, and Gene Expression in Mammary Tissue of Lactating Sows

    No full text
    The aims of this study were to test the effects of dietary probiotics and acidifiers on the production performance, colostrum components, serum antioxidant activity and hormone levels, and gene expression in the mammary tissue of lactating sows. Four treatments were administered with six replicates to 24 lactating sows. The control group (GC) received a basal diet, while the experimental groups received a basal diet with 200 mL/d probiotics (GP), 0.5% acidifiers (GA), and 200 mL/d probiotics + 0.5% acidifiers (GM), respectively. Compared with the GC, (1) the average weight of the piglets on the 21st day of lactation in the GM was higher (p p p p p < 0.05). In summary, the basal diet mixed with 200 mL/d probiotics + 0.5% acidifiers could improve the production performance, colostrum components, serum antioxidant activity, and hormone levels of lactating sows

    Data_Sheet_1_Effects of blended microbial feed additives on performance, meat quality, gut microbiota and metabolism of broilers.docx

    No full text
    The present study investigated the effects of blend microbial feed additive (BMFA) in diet on performance, meat quality, gut microbiota and metabolism of broilers. In this study 240 seventy-day-old female Wenchang broilers were randomly allocated into four groups with five replicates of 12 broilers each. Broilers in the control group was fed only basal diet (S0), and the other three groups were fed the same basal diet supplemented with 0.2% (S1), 0.4% (S2), or 0.6% (S3) of BMFA, respectively. The trial continued for 54 days. The results showed that broilers in S2 and S3 had lower average daily feed intake (ADFI) compared with S0 and S1 (P 0.05). The highest thigh muscle percentage was observed in S2 (P < 0.05) among all groups. Diet supplementation with BMFA reduced the shear force in both breast and thigh muscles (P < 0.05) of broilers. An increase (P < 0.05) in the total unsaturated fatty acid (USFA), monounsaturated fatty acids (MUFA), and ratio of unsaturated fatty acids to saturated fatty acid (USFA/SFA) in breast muscles was observed in S3 compared with S0. It was found that the S3 had a relatively higher abundance of Lactobacillus (P < 0.001), as well as a lower abundance of the Bacteroides, Rikenellaceae RC9 gut group, Olsenella, Prevotellaceae UCG-001 and Prevotella (P < 0.05) than the S0. Correlation analysis indicated that a total of 17 differential metabolites between the S3 and S0 were significantly correlated with the 7 differential genera microflora. Overall, diet supplementation with 0.6% of BMFA can significantly improve the meat quality of broilers by decreasing the concentration of SFA and enhancing the levels of the total USFA, MUFA and USFA/SFA in breast muscles. Those findings were tightly bound to the higher proportion of Lactobacillus genus in the intestinal tract of broilers influenced by BMFA.</p

    OSucs: An Online Prognostic Biomarker Analysis Tool for Uterine Carcinosarcoma

    No full text
    Background: Uterine carcinosarcoma (UCS) is a type of rare and aggressive tumor. The standard treatment for UCS involves surgical treatment followed by radiochemotherapy. Clinical outcomes of UCS patients are poor due to high metastasis and relapse rate. Therefore, new targeted therapy strategies for UCS are needed. Because UCS is highly heterogenous, it is critical to identify and develop prognostic biomarkers to distinguish molecular subtypes of UCS for better treatment guidance. Methods: Using gene expression profiles and clinical follow-up data, we developed an online consensus survival analysis tool named OSucs. This web tool allows researchers to conveniently analyze the prognostic abilities of candidate genes in UCS. Results: To test the reliability of this server, we analyzed five previously reported prognostic biomarkers, all of which showed significant prognostic impacts. In addition, ETV4 (ETS variant transcription factor 4), ANGPTL4 (Angiopoietin-like protein 4), HIST1H1C (Histone cluster 1 H1 family member c) and CTSV (Cathepsin V) showed prognostic potential in a molecular subtype-specific manner. Conclusion: We built a platform for researchers to analyze if genes have prognostic potentials in UCS
    corecore