18 research outputs found

    Preparation and properties of antistatic high-strength aramid III/MWCNTs-OH fibers

    Get PDF
    Composite fibers made from aramid III and hydroxylated multiwalled carbon nanotubes (MWCNTs-OH) combine the excellent mechanical and electrical properties of both components, resulting in strong antistatic performance. However, it is of paramount importance to ensure the homogeneous dispersion of multi-walled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) within the aramid III spinning solution and optimize the compatibility between the two constituents to augment the overall performance of the composite fibers. To this end, this investigation successfully accomplished the dispersion of MWCNTs-OH in the spinning solution and probed the dispersion mechanism using molecular dynamics simulations. Moreover, composite fibers, comprising 2.4 weight percent MWCNTs-OH, were initially fabricated using the wet spinning method. These fibers displayed a uniform texture and a tensile strength of 1.210 GPa, signifying a noteworthy enhancement of 113.25% in comparison to the strength prior to modification. With respect to thermal behavior, the fibers exhibited a mass reduction of 21.24% within the temperature range of 0°C–538°C. In the temperature interval from 538°C to 800°C, the mass loss diminished to 10.31%, representing a substantial 71.03% reduction when compared to the unmodified state. Remarkably, even when subjected to temperatures exceeding 800°C, the composite fibers retained a residual mass of 68.45%, indicating a notable 61.17% increase from their initial condition. In terms of electrical properties, the fibers exhibited a specific resistance (ρ) of 3.330 × 109 Ω cm, demonstrating effective antistatic behavior. In summary, the antistatic composite fibers studied in this paper can effectively mitigate the hazards of static electricity in various applications, including military protection and engineering equipment in both military and civilian fields

    Impact of Red Imported Fire Ant Nest-Building on Soil Properties and Bacterial Communities in Different Habitats

    No full text
    The red imported fire ant (Solenopsis invicta Buren) is a highly adaptable invasive species that can nest and reproduce in different habitat soils. We aimed to explore the adaptability of red imported fire ants in different habitats by analyzing changes in the physicochemical properties of nest soils and bacterial communities. Five habitat types (forest, tea plantation, rice field, lawn, and brassica field) were selected. The results showed that the pH of the nest soils increased significantly in all five habitats compared to the control soils of the same habitat. A significant increase in nitrogen content was detected in the nests. The Cr, Pb, Cu, and Ni levels were significantly reduced in the soils of the five habitats, due to nesting activities. Analysis of the composition and diversity of the soil microbial community showed that, although the richness and diversity of bacteria in the nest soils of red imported fire ants in the five habitats varied, the relative abundance of Actinobacteria significantly increased and it emerged as the dominant bacterial group. These results indicate that red imported fire ants modify the physicochemical properties of nest soils and bacterial communities to create a suitable habitat for survival and reproduction

    First Record of Aspergillus fijiensis as an Entomopathogenic Fungus against Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae)

    No full text
    The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the most widespread and devastating pest species in citrus orchards and is the natural vector of the phloem-limited bacterium that causes Huanglongbing (HLB) disease. Thus, reducing the population of D. citri is an important means to prevent the spread of HLB disease. Due to the long-term use of chemical control, biological control has become the most promising strategy. In this study, a novel highly pathogenic fungal strain was isolated from naturally infected cadavers of adult D. citri. The species was identified as Aspergillus fijiensis using morphological identification and phylogenetic analysis and assigned the strain name GDIZM-1. Tests to detect aflatoxin B1 demonstrated that A. fijiensis GDIZM-1 is a non-aflatoxin B1 producer. The pathogenicity of the strain against D. citri was determined under laboratory and greenhouse conditions. The results of the laboratory study indicated that nymphs from the 1st to 5th instar and adults of D. citri were infected by A. fijiensis GDIZM-1. The mortality of nymphs and adults of D. citri caused by infection with A. fijiensis increased with the concentration of the conidial suspension and exposure time, and the median lethal concentration (LC50) and median lethal time (LT50) values gradually decreased. The mortality of D. citri for all instars was higher than 70%, with high pathogenicity at the 7th day post treatment with 1 × 108 conidia/mL. The results of the greenhouse pathogenicity tests showed that the survival of D. citri adults was 3.33% on the 14th day post-treatment with 1 × 108 conidia/mL, which was significantly lower than that after treatment with the Metarhizium anisopliae GDIZMMa-3 strain and sterile water. The results of the present study revealed that the isolate of A. fijiensis GDIZM-1 was effective against D. citri and it provides a basis for the development of a new microbial pesticide against D. citri after validation of these results in the field

    Green lending and stock price crash risk: Evidence from the green credit reform in China

    No full text
    Green lending and stock price crash risk: Evidence from the green credit reform in Chin

    Study of SARS-CoV-2 transmission in urban environment by questionnaire and modeling for sustainable risk control

    No full text
    Caused by SARS-CoV-2, COVID-19 has become a severe threaten to society and human health, its epidemic control emerges as long-term issue. A sustainable epidemic and environmental transmission risk control (SEERC) in urban area is urgently needed. This work aims to conduct a new investigation on the transmission risk of SARS-COV-2 as virus/hazardous material through various environmental medias, routes and regions in the entirely urban area for guiding the SEERC. Specifically, 5 routes in 28 regions (totally 140 scenarios) are considered. For a new perspective, the risk evaluation is conducted by the quantification of frontline medicals staffs’ valuable experience in this work. 207 specialists responsible for the treatment of over 9000 infected patients are involved. The result showed that degree of risk was in the order of breath>contact-to-object>contact-to-human>intake>unknown. The modeling suggested source control as the prior measure for epidemic control. The combination of source control & mask wearing showed high efficiency in SEERC. The homeworking policy needed to cooperate with activity limitation to perform its efficiency. Subsequently, a new plan for SEERC was discussed. This work delivered significant information to researchers and decision makers for the further development of sustainable control for SARS-COV-2 spreading and COVID-19 epidemic
    corecore