20 research outputs found

    Case report: Peroral endoscopic myotomy for acute pandysautonomia-associated distal esophageal spasm in a child

    Get PDF
    Acute pandysautonomia-associated distal esophageal spasm is a rare disease with an unclear etiology. Here, we describe a 12-year-old boy with an acute pandysautonomia-associated distal esophageal spasm who was treated using a peroral endoscopic myotomy (POEM). The patient's clinical features included recurrent dysphagia, nausea, vomiting, growth retardation, and signs of autonomic nerve dysfunction (e.g., a decreased production of tears and sweat, and an increased production of saliva). Signs of the distal esophageal spasm were visible in upper gastrointestinal radiography, endoscopy, and high-resolution esophageal manometry. After the POEM, the patient exhibited improvements in nausea and vomiting, and his dysphagia symptoms were relieved by the 6-month follow-up visit. However, the patient's neurological problems persisted. The satisfactory short-term clinical responses in our patient suggest that POEM is feasible, safe, and effective for the treatment of acute pandysautonomia-associated distal esophageal spasms in children

    Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    Get PDF
    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded noncooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.http://www.tandfonline.comtoc/tetn20hb2017Electrical, Electronic and Computer Engineerin

    Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. Thanks to the tight requirements on its optical and radio-purity properties, it will be able to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range from tens of keV to hundreds of MeV. A key requirement for the success of the experiment is an unprecedented 3% energy resolution, guaranteed by its large active mass (20 kton) and the use of more than 20,000 20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution sampling electronics located very close to the PMTs. As the Front-End and Read-Out electronics is expected to continuously run underwater for 30 years, a reliable readout acquisition system capable of handling the timestamped data stream coming from the Large-PMTs and permitting to simultaneously monitor and operate remotely the inaccessible electronics had to be developed. In this contribution, the firmware and hardware implementation of the IPbus based readout protocol will be presented, together with the performances measured on final modules during the mass production of the electronics

    Mass testing of the JUNO experiment 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose, large size, liquid scintillator experiment under construction in China. JUNO will perform leading measurements detecting neutrinos from different sources (reactor, terrestrial and astrophysical neutrinos) covering a wide energy range (from 200 keV to several GeV). This paper focuses on the design and development of a test protocol for the 20-inch PMT underwater readout electronics, performed in parallel to the mass production line. In a time period of about ten months, a total number of 6950 electronic boards were tested with an acceptance yield of 99.1%

    Validation and integration tests of the JUNO 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. JUNO will be able to study the neutrino mass ordering and to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range, spanning from 200 keV to several GeV. Given the ambitious physics goals of JUNO, the electronic system has to meet specific tight requirements, and a thorough characterization is required. The present paper describes the tests performed on the readout modules to measure their performances.Comment: 20 pages, 13 figure

    Analysis of Water Features in Gas Leakage Area

    Get PDF
    In a certain frequency range, gas is an effective absorber and scatterer of sound, which changes the compressibility of water, and then changes the speed and frequency of sound. Gas continues rising, deforming, and dissolving. The same bubble of natural gas has different radii at different depths. By analyzing these changes, the resonance frequency of gas bubble, and its impacts on sound wave, characteristics of the influences of gas at different depths on the incident sound wave can be obtained. The main sound features of gas are relevant to the gas size, gas content, velocity, attenuation, resonance frequency, the scattering cross-section, and so forth. Sound models with hydrate and free gas in the water and sediment are established. Through the practical application to actual data, the sound characteristics yielded when the gas (or gas hydrate dissociation) escaped the water of seismic data are very clear

    Microwave-assisted NaHSO<sub>4</sub>-catalyzed synthesis of ricinoleic glycol ether esters

    No full text
    <p>The synthesis of several ricinoleic acid glycol ether esters by high-pressure microwave radiation is described. Ricinoleic acid which is from castor oil reacted fastly with glycol ethers in the presence of NaHSO<sub>4</sub> · H<sub>2</sub>O and dichloromethane (DCM) in special microwave reactor. The influences of reaction factors such as catalyst and solvent type, reaction temperature, and time were investigated and the optimal reaction conditions were obtained. The activity of catalyst had a higher performance up to the 10th cycle and the excellent values of turnover numbers and turnover frequency were obtained. Compared with the traditional esterification in reflux heating systems., the microwave-assisted process has many advantages such as shorter reaction time, less side effects, higher yield, which is a great potential for the development of green chemistry.</p
    corecore