16 research outputs found

    Experimental Study of the Shear Performance of Scrap Tire-Granular Material Composite Columns

    No full text
    Scrap tires filled with granular materials can be used for geotechnical engineering. However, when subjected to earthquakes and other conditions, shear failure occurs between the tires. In this paper, eight groups of tire-sand composite columns are prepared and tested under shear strength tests. Different vertical forces, sand densities, and loading modes are considered to investigate the shear performance. The failure patterns, load-displacement curves, and stress-strain curves are observed. The results show that the shear failure of composite undergoes three typical stages: overall flexural lateral displacement, transverse compression, and relative interfacial slip. Under monotonic loading, the restriction of the transverse deformation of the composite column is enhanced with increasing vertical force. The overall antidisturbance ability of the composite is enhanced with increasing sand density. The cyclic loading mode can improve the lateral stiffness of the tire-sand composite. The relative motion between the tire-sand interfaces has two forms: elastic creep and interface sliding. Under the hoop effect of the tire, the pores between the particles produce a pseudocohesive force, which causes the shear strength of the tire-sand composite to be higher than that of common sand. A formula is obtained to describe the stress-strain variations in the composite under different vertical forces

    Experimental study on the erosion resistance of rubberized cement-soil

    No full text
    This study examines the effects of granular rubber on the erosion resistance of Cement Soil (CS). Rubber powder was incorporated into CS where the Cement Content Ratios (CCR) of the samples were 10%, 15%, 20% and 25% at five different Rubber Particles Content Ratios (RCR) of 0%, 5%, 10%, 15% and 20%. The main tests included Erosion test, Permeability test and Crystallization test, and theses test results were used to analyze the influence and mechanism of rubber particles on the erosion resistance of CS. Under the action of NaCl and Na2SO4 solutions, the mass and unconfined compressive strength of rubberized cement soil (RCS) went up first, and then decreased with the increase of RCR. When the CCR is more than 20%, the increase of CCR has no obvious effect on the strength after the erosion process. The compressive strength was stronger with bigger size of the rubber particles. Under the same depth, the chloride ion content of RCS decreased with the increase of RCR. When the RCR is more than 15%, there is no significant effect on the erosion resistance with adding more rubber particles in CS. The reasons for increasing of erosion resistance of RCS can be summed up into three aspects: blocking capillary action, elastomer action and preventing crack propagation action. The effect of elastomer delays the time of cracks developing of CS. From the SEM test, it can be observed that the rubber powder hindered the development of micro-cracks since it offered adequate restraint to prevent the shorter cracks from propagating. All the above results show that rubber powder can effectively improve the erosion resistance of cement soil

    Laboratory Investigation on the Shrinkage Cracking of Waste Fiber-Reinforced Recycled Aggregate Concrete

    No full text
    This paper aims to study the effectiveness of adding waste polypropylene fibers into recycled aggregate concrete (RAC) on shrinkage cracking. The influences of fiber properties (length and content) on the shrinkage performance of RAC are investigated. Firstly, through the plat-ring-type shrinkage test and free shrinkage test, both of the early age and long-term shrinkage performance of waste fiber recycled concrete (WFRC) were measured. Then, X-ray industrial computed tomography (ICT) was carried out to reflect the internal porosity changes of RAC with different lengths and contents of fibers. Furthermore, the compressive strength and flexural strength tests are conducted to evaluate the mechanical performance. The test results indicated that the addition of waste fibers played an important role in improving the crack resistance performance of the investigated RAC specimens as well as controlling their shrinkage behaviour. The initial cracking time, amount and width of cracks and shrinkage rate of fiber-reinforced specimens were better than those of the non-fiber-reinforced specimen. The addition of waste fibers at a small volume fraction in recycled concrete had not obviously changed the porosity, but it changed the law of pore size distribution. Meanwhile, the addition of waste fibers had no significant effect on the compressive strength of RAC, but it enhanced the flexural strength by 43%. The specimens reinforced by 19-mm and 0.12% (volume fraction) waste fibers had the optimal performance of cracking resistance

    Adaptive Recursive Decentralized Cooperative Localization for Multirobot Systems With Time-Varying Measurement Accuracy

    No full text
    Decentralized cooperative localization (DCL) is a promising method to determine accurate multirobot poses (i.e., positions and orientations) for robot teams operating in an environment without absolute navigation information. Existing DCL methods often use fixed measurement noise covariance matrices for multirobot pose estimation; however, their performance degrades when the measurement noise covariance matrices are time-varying. To address this problem, in this article, a novel adaptive recursive DCL method is proposed for multi-robot systems with time-varying measurement accuracy. Each robot estimates its pose and measurement noise covariance matrices simultaneously in a decentralized manner based on the constructed hierarchical Gaussian models using the variational Bayesian approach. Simulation and experimental results show that the proposed method has improved cooperative localization accuracy and estimation consistency but slightly heavier computational load than the existing recursive DCL method

    Effect of Freeze-Thaw Cycles on Triaxial Strength Property Damage to Cement Improved Aeolian Sand (CIAS)

    No full text
    Natural aeolian sand has the characteristics of low cohesion and poor water stability. In order to improve its crack resistance properties in the process of freeze-thaw cycles, P.O 42.5 ordinary Portland cement was added to form a mixture called cement improved aeolian sand (CIAS). SEM was used to analyze the microscopic micro-structure of CIAS at different times (7 days and 28 days). The mechanical properties of CIAS samples affected by freeze-thaw cycles were tested in a triaxial instrument, and gray-scale images of the three-phase distribution in the CIAS after freeze-thaw cycling were obtained by computed tomography (CT) scanning technology. The pore characteristic parameters (pore area, fractal dimension, and crack length) were studied by digital image process technique. Based on classical Griffith fracture theory, the development of the crack length and crack width with increasing freeze-thaw cycles is determined. Assuming that the pore area subordinates to the Weibull distribution, the parameters of the Weibull distribution, the damage evolution defined by the elastic modulus attenuation, and the pore area development of CIAS were determined. Research shows the cohesion decreases and internal friction angle increases with increasing cycle numbers. Three development patterns are observed: crack growth, crack closure, and crack merging, and the three patterns interact during freeze-thaw cycling. Furthermore, the fractal dimension of the pore edge fluctuates with the increasing number of freeze-thaw cycles. This work provides a theoretical basis for the application of aeolian sand and develops a method for disaster prevention in applications of freeze-thaw cycling

    Research on Micro-Mechanics Modelling of TPU-Modified Asphalt Mastic

    No full text
    To explore the interactions and mechanisms of Thermoplastic polyurethane (TPU)-modified asphalt with different kinds of mineral fillers, a micro-mechanical model for TPU-modified asphalt mastic was established, which considered the interaction between asphalt and mineral powder to effectively analyze the internal mechanisms affecting the rheological properties of TPU-modified asphalt mastic. In this study, according to the micro-mechanics of composites’ principles, the dynamic shear modulus (|G*|) of asphalt mastic with different mass ratios of filler/asphalt (F/A) was calculated by the homogenize morphologically representative pattern (H-MRP) model. The key ratio of F/A, which is close to the test result, can be determined, and a four-phase H-MRP model of the TPU modified asphalt mastic was established after considering the structure of asphalt layer thickness. The results were interpreted based on the known reactions of TPU with asphalt model compounds. The |G*| of TPU-modified asphalt mastic was predicted by using this model. Furthermore, the effects of the complex shear modulus, Poisson’s ratio of TPU-modified asphalt, Poisson’s ratio, particle size of mineral powder, and thickness of the structural asphalt layer in the |G*| of TPU-modified asphalt mastic were analyzed in the whole-model construction, as well as the internal mechanism of the |G*| of TPU modified asphalt mastic. In addition, can also be found the predicted value of |G*| calculated by the four-phase H-MRP model is close to the experimental value after choosing a structural asphalt layer of appropriate thickness

    Oxidative dehydrogenation of ethane to ethylene in the presence of HCl over CeO2-based catalysts

    No full text
    This article reports a new catalytic route for the oxidative dehydrogenation of ethane to ethylene in the presence of HCl at moderate temperatures. CeO2 was found to be the most efficient catalyst for the production of ethylene from the variety of metal oxides examined in this work. CeO2 nanocrystals with rod and cube morphologies showed higher ethane conversions and ethylene selectivities than CeO2 nanoparticles. The modification of CeO2 by MnOx further enhanced the catalytic performance. Ethane conversion of 94% and ethylene selectivity of 69% were obtained after 2 h of reaction at 723 K over an 8 wt% MnOx-CeO2 catalyst. This catalyst was stable and the ethylene yield could be sustained at 65%-70% over 100 h of reaction. The presence of HCl played a key role in the selective production of C 2H4, and some of the C2H4 was probably formed from chloroethane by dehydrochlorination. ? 2014 Dalian Institute of Chemical Physics, the Chinese Academy of Sciences

    FOXO-like Gene Is Involved in the Regulation of 20E Pathway through mTOR in <i>Eriocheir sinensis</i>

    No full text
    The Forkhead Box O (FOXO) gene plays a key role in various biological processes, such as growth, metabolism, development, immunity and longevity. Molting is an essential process for crustacean growth, which is mainly regulated by 20-hydroxyecdysone (20E) and molt-inhibiting hormone (MIH). Although the role of FOXO in regulating the immune response of crustaceans is well documented, its involvement in controlling crustacean molting remains unclear. In this study, a FOXO-like gene (designed as EsFOXO-like) was identified in Eriocheir sinensis, and the regulation of the 20E pathway by EsFOXO-like was also investigated. The coding sequence of EsFOXO-like was 852 bp, which consisted of 283 amino acids including a conserved Forkhead (FH) domain. EsFOXO-like shared high similarity with FOXO genes from other crustaceans, and the mRNA expression levels of the EsFOXO-like gene were highest in the hepatopancreas and lowest in the hemocytes. However, transcription and protein expression of the EsFOXO-like gene were found to be up-regulated only during the pre-molt stage in the hepatopancreas, with lower expression levels observed at the post-molt stage. To explore the role of EsFOXO-like in the 20E pathway, EsFOXO-like was firstly inhibited by a specific FOXO inhibitor (AS1842856) and then through an EsFOXO-like dsRNA injection, respectively, and the results showed that the relative expression levels of EsFOXO-like were notably decreased in the hepatopancreas after both the inhibitor and dsRNA treatments. The 20E concentration, the mRNA expression levels of the 20E receptors including the ecdysone receptor (EcR) and the retinoid-X receptor (RXR) and EsmTOR transcription in the AS1842856 group or the EsFOXO-RNAi group were all significantly higher than that in the control group, while the mRNA expression level of EsMIH was significantly decreased after EsFOXO-like inhibition. To further investigate whether the EsFOXO-like acts through mTOR or not, Rapamycin was administered to inhibit mTOR activity in EsFOXO-like inhibited crabs. The results revealed a significant reduction in the concentration of 20E and the expression level of EsMIH in the AS1842856 + Rapamycin group compared to the AS1842856 + DMSO group, accompanied by an increase in EsEcR and EsRXR expression. These findings collectively suggest that EsFOXO-like regulates the 20E pathway through mTOR, which offered valuable insights into the understanding of the molting process in crustaceans
    corecore