507 research outputs found

    An sTGC Prototype Readout System for ATLAS New-Small-Wheel Upgrade

    Full text link
    This paper presents a readout system designed for testing the prototype of Small-Strip Thin Gap Chamber (sTGC), which is one of the main detector technologies used for ATLAS New-Small-Wheel Upgrade. This readout system aims at testing one full-size sTGC quadruplet with cosmic muon triggers

    Optimizing Gear Shifting Strategy for Off-Road Vehicle with Dynamic Programming

    Get PDF
    Gear shifting strategy of vehicle is important aid for the acquisition of dynamic performance and high economy. A dynamic programming (DP) algorithm is used to optimize the gear shifting schedule for off-road vehicle by using an objective function that weighs fuel use and trip time. The optimization is accomplished through discrete dynamic programming and a trade-off between trip time and fuel consumption is analyzed. By using concave and convex surface road as road profile, an optimal gear shifting strategy is used to control the longitudinal behavior of the vehicle. Simulation results show that the trip time can be reduced by powerful gear shifting strategy and fuel consumption can achieve high economy with economical gear shifting strategy in different initial conditions and route cases

    A New Artificial Intelligence-Based Hierarchical K-Means Clustering Technique to Detect Addictive Twitter Activity

    Get PDF
    To stop the COVID-19 epidemic from spreading among their populations, several countries have implemented lockdowns. Students are being forced to stay at home during these lockdowns, which is causing them to use mobile phones, social media, and other digital technologies more frequently than ever. Their poor utilization of these digital tools may be detrimental to their emotional and mental health. In this study, we implement an Artificial Intelligence (AI) approach named Hierarchy-based K-Means Clustering (HKMC) algorithm to group individuals with comparable Twitter consumption habits to detect addictive Twitter activity during the epidemic. The effectiveness of the suggested HKMC is evaluated in terms of accuracy, precision, recall, and f1-score in respect to the association between students’ mental health and mobile phone dependency. Additionally, this study offers a comparative examination of both the suggested and existing procedures

    Proteomics and SSH Analyses of ALA-Promoted Fruit Coloration and Evidence for the Involvement of a MADS-Box Gene, MdMADS1

    Get PDF
    Skin color is a key quality attribute of fruits and how to improve fruit coloration has long been a major concern. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, can significantly increase anthocyanin accumulation in fruit skin and therefore effectively improve coloration of many fruits, including apple. However, the molecular mechanism how ALA stimulates anthocyanin accumulation in fruit skin remains unknown. Here, we investigated the impact of ALA on apple skin at the protein and mRNA levels. A total of 85 differentially expressed proteins in apple skins between ALA and water treatment (control) were identified by complementary gel-based and gel-freeseparation techniques. Most of these differentially expressed proteins were up-regulated by ALA. Function analysis suggested that 87.06% of the ALA-responsive proteins were associated with fruit ripening. To further screen ALA-responsive regulators, we constructed a subtracted cDNA library (tester: ALA treatment; driver: control) and obtained 104 differentially expressed unigenes, of which 38 unigenes were indicators for the fruit ripening-related gene. The differentially changed proteins and transcripts did not correspond well at an individual level, but showed similar regulated direction in function at the pathway level. Among the identified fruit ripening-related genes, the expression of MdMADS1, a developmental transcription regulator of fruit ripening, was positively correlated with expression of anthocyanin biosynthetic genes (MdCHS, MdDFR, MdLDOX and MdUFGT) in apple skin under ALA treatment. Moreover, overexpression of MdMADS1 enhanced anthocyanin content in transformed apple calli, which was further enhanced by ALA. The anthocyanin content in MdMADS1-silenced calli was less than that in the control with ALA treatment, but higher than that without ALA treatment. These results indicated that MdMADS1 is involved in ALA-induced anthocyanin accumulation. In addition, anthocyanin-related verification in apple calli suggested that the regulation of MdMADS1 on anthocyanin biosynthesis was partially independent of fruit ripening process. Taken together, our findings provide insight into the mechanism how ALA regulates anthocyanin accumulation and add new information on transcriptase regulators of fruit coloration

    Low-dimensional Denoising Embedding Transformer for ECG Classification

    Full text link
    The transformer based model (e.g., FusingTF) has been employed recently for Electrocardiogram (ECG) signal classification. However, the high-dimensional embedding obtained via 1-D convolution and positional encoding can lead to the loss of the signal's own temporal information and a large amount of training parameters. In this paper, we propose a new method for ECG classification, called low-dimensional denoising embedding transformer (LDTF), which contains two components, i.e., low-dimensional denoising embedding (LDE) and transformer learning. In the LDE component, a low-dimensional representation of the signal is obtained in the time-frequency domain while preserving its own temporal information. And with the low dimensional embedding, the transformer learning is then used to obtain a deeper and narrower structure with fewer training parameters than that of the FusingTF. Experiments conducted on the MIT-BIH dataset demonstrates the effectiveness and the superior performance of our proposed method, as compared with state-of-the-art methods.Comment: To appear at ICASSP 202

    Experimental demonstration of enhanced violations of Leggett-Garg inequalities in a PT\mathcal{PT}-symmetric trapped-ion qubit

    Full text link
    The Leggett-Garg inequality (LGI) places a bound for the distinction between quantum systems and classical systems. Despite that the tests of temporal quantum correlations on LGIs have been studied in Hermitian realm, there are still unknowns for LGIs in non-Hermitian conditions due to the interplay between dissipation and coherence. For example, a theoretical hypothesis to be experimentally validated, suggests that within non-Hermitian systems, the non-unitary evolution of the system dynamics allows the boundaries of the LGIs to surpass the constraints imposed by traditional quantum mechanics. Here, we demonstrate the experimental violation of LGIs in a parity-time (PT\mathcal{PT})-symmetric trapped-ion qubit system by measuring the temporal correlation of the evolving states at different times. We find that the upper bounds of the three-time parameter K3K_3 and the four-time parameter K4K_4 show enhanced violations with the increasing dissipation, and can reach the upper limit by infinitely approaching exceptional point. We also observe the distinct behavior of the lower bounds for K3K_3 and K4K_4. While the lower bound for K3K_3 remains constant, the case for K4K_4 shows an upward trend with increasing dissipation. These results reveal a pronounced dependence of the system's temporal quantum correlations on its dissipation to the environment. This opens up a potential pathway for harnessing dissipation to modulate quantum correlations and entanglement

    Joint Localization and Communication Enhancement in Uplink Integrated Sensing and Communications System with Clock Asynchronism

    Full text link
    In this paper, we propose a joint single-base localization and communication enhancement scheme for the uplink (UL) integrated sensing and communications (ISAC) system with asynchronism, which can achieve accurate single-base localization of user equipment (UE) and significantly improve the communication reliability despite the existence of timing offset (TO) due to the clock asynchronism between UE and base station (BS). Our proposed scheme integrates the CSI enhancement into the multiple signal classification (MUSIC)-based AoA estimation and thus imposes no extra complexity on the ISAC system. We further exploit a MUSIC-based range estimation method and prove that it can suppress the time-varying TO-related phase terms. Exploiting the AoA and range estimation of UE, we can estimate the location of UE. Finally, we propose a joint CSI and data signals-based localization scheme that can coherently exploit the data and the CSI signals to improve the AoA and range estimation, which further enhances the single-base localization of UE. The extensive simulation results show that the enhanced CSI can achieve equivalent bit error rate performance to the minimum mean square error (MMSE) CSI estimator. The proposed joint CSI and data signals-based localization scheme can achieve decimeter-level localization accuracy despite the existing clock asynchronism and improve the localization mean square error (MSE) by about 8 dB compared with the maximum likelihood (ML)-based benchmark method.Comment: 13 pages, 11 figures, submitted to JSAC special issue "Positioning and Sensing Over Wireless Networks
    • …
    corecore