92 research outputs found

    Elevational patterns of the percentages of plant genera with tropical and temperate affinities in Nepal

    Get PDF
    Background Geographical patterns of species diversity are one of the key topics in biogeography and ecology. The effects of biogeographical affinities on the elevational patterns of species diversity have attracted much attention recently, but the factors driving elevational patterns of the percentages of plants with tropical and temperate biogeographical affinities have not been adequately explored. Methods We first used univariate least squares regressions to evaluate the effects of each predictor on the elevational patterns of the percentages of plant genera with tropical and temperate affinities in Nepal. Then, the lowest corrected Akaike information criterion value was used to find the best-fit models for all possible combinations of the aforementioned predictors. We also conducted partial regression analysis to investigate the relative influences of each predictor in the best-fit model of the percentages of plant genera with tropical and temperate affinities. Results With the increase of elevation, the percentage of plant genera with tropical affinity significantly decreased, while that of plant genera with temperate affinity increased. The strongest predictor of the percentages of plant genera with tropical affinity in the examined area was the minimum temperature of the coldest month. For the elevational patterns of the percentages of plant genera with temperate affinity, the strongest predictor was the maximum temperature of the warmest month. Compared with mid-domain effects (MDE), climatic factors explained much more of the elevational variation of the percentages of plant genera with tropical and temperate affinities. Discussion The elevational patterns of the percentages of plant genera with tropical affinities and the factors driving them supported the revision of the freezing-tolerance hypothesis. That is, freezing may filter out plant genera with tropical affinity, resulting in the decrease of their percentages, with winter coldness playing a predominant role. Winter coldness may not only exert filtering effects on plant genera with tropical affinity, but may also regulate the interactions between plant genera with tropical and temperate affinities. The elevational patterns of tropical and temperate plant diversities, and those of their percentages, might be controlled by different factors or mechanisms. Freezing-tolerance and the interactions between plant genera with tropical and temperate affinities regulated by climatic factors played stronger roles than MDE in shaping the elevational patterns of the percentages of plant genera with tropical and temperate affinities in Nepal

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Spatial patterns of species diversity of seed plants in China and their climatic explanation

    No full text

    Spatial Pattern of Plant Specimen and Its Implications in Conservation Biology in Hengduan Mountains of Southwest China

    No full text
    Part 1: GIS, GPS, RS and Precision FarmingInternational audienceIn the past, the spatial patterns of specimen have not been paid enough attention. In this study, we probed the spatial pattern of plant specimen and its implications in conservation biology in Hengduan Mountains, one of the hotspots of global biodiversity, based on the dataset extracted from Chinese Virtual Herbarium. The results showed that there were big differences of specimen density among the units of the studied area. High specimen density was mainly found in the boundary regions of Northwest Yunnan, Southwest Sichuan and Southeast Tibet, the central part and the southern part of the studied area. The interest of the collectors or botanists was mainly focused on the units with low population density (low disturbance of human activity) and high complexity of topography. With the increase of specimen density, an increasing trend of species density was observed. Most of the units studied were not paid enough attention in the history of specimen collection. If we collected specimen at higher density in blank or marginalized area, we may have much more chances to find more taxonomies. The spatial pattern of specimen density may shape our understanding of the spatial pattern of specie diversity. We should not only inherit specimen from our predecessors, but also, we should probe into specimen repositories to understand biodiversity status and its spatial pattern

    Future Climate Change and Anthropogenic Disturbance Promote the Invasions of the World’s Worst Invasive Insect Pests

    No full text
    Invasive insect pests adversely impact human welfare and global ecosystems. However, no studies have used a unified scheme to compare the range dynamics of the world’s worst invasive insect pests. We investigated the future range shifts of 15 of the world’s worst invasive insect pests. Although future range dynamics varied substantially among the 15 worst invasive insect pests, most exhibited large range expansions. Increases in the total habitat suitability occurred in more than ca. 85% of global terrestrial regions. The relative impacts of anthropogenic disturbance and climate variables on the range dynamics depended on the species and spatial scale. Aedes albopictus, Cinara cupressi, and Trogoderma granarium occurred four times in the top five largest potential ranges under four future climate scenarios. Anoplophora glabripennis, Aedes albopictus, and Co. formosanus were predicted to have the largest range expansions. An. glabripennis, Pl. manokwari, Co. formosanus, and So. invicta showed the largest range centroid shifts. More effective strategies will be required to prevent their range expansions. Although the strategies should be species-specific, mitigating anthropogenic disturbances and climate change will be essential to preventing future invasions. This study provides critical and novel insights for developing global strategies to combat the invasions of invasive insect pests in the future

    Future Range Dynamics Suggest Increasing Threats of Grey Squirrels (<i>Sciurus carolinensis</i>) against Red Squirrels (<i>Sciurus vulgaris</i>) in Europe: A Perspective on Climatic Suitability

    No full text
    Interactions between the introduced gray squirrel (Sciurus carolinensis) and the native red squirrel (S. vulgaris) play an important role in the ecological equilibrium of European forest ecosystems. However, the range dynamics of the grey squirrel and red squirrel under future climate change scenarios remain unknown. The present study examined the range dynamics of grey squirrels and red squirrels in Europe and their range overlap now and in the future based on climate change. Under the most optimistic climate change scenario (SSP126), expansion of the grey squirrel’s range was mainly predicted in Germany, France, Croatia, Serbia, and Bulgaria. Under the most pessimistic climate change scenario (SSP585), expansion of the grey squirrel’s range was predicted in vast and scattered regions. Additionally, France, Italy, and Germany were overlapping ranges for the grey squirrel and red squirrel in the future under the SSP126 scenario but not under the current conditions, suggesting that there will be new regions where grey squirrels may threaten red squirrels in the future under SSP126. The range overlaps under the SSP585 scenario but not under the current conditions were vast and scattered, suggesting that there will be new regions in the future where grey squirrel may displace red squirrels under SSP585. Despite considerable variation, we detected expansions in the grey squirrel and red squirrel ranges and an increase in overlapping ranges between grey squirrels and red squirrels in the future. Therefore, our prediction suggests increasing threats of grey squirrels toward red squirrels in Europe in the future under climate change, which may impact the ecological equilibrium of European forest ecosystems

    Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal

    No full text
    <div><p>This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential response of taxa with varying biogeographical affinities to climatic factors and MDE.</p></div
    • …
    corecore