14 research outputs found

    Joint and Competitive Caching Designs in Large-Scale Multi-Tier Wireless Multicasting Networks

    Full text link

    Mycobacterium smegmatis Induces Neurite Outgrowth and Differentiation in an Autophagy-Independent Manner in PC12 and C17.2 Cells

    Get PDF
    Both pathogenic and non-pathogenic Mycobacteria can induce the differentiation of immune cells into dendritic cells (DC) or DC-like cells. In addition, pathogenic Mycobacteria is found to stimulate cell differentiation in the nerves system. Whether non-pathogenic Mycobacteria interacts with nerve cells remains unknown. In this study, we found that co-incubation with fast-growing Mycobacteria smegmatis induced neuron-like morphological changes of PC12 and C17.2 cells. Moreover, the M. smegmatis culture supernatant which was ultrafiltrated through a membrane with a 10 kDa cut-off, induced neurite outgrowth and differentiation in an autophagy-independent pathway in PC12 and C17.2 cells. Further analysis showed that IFN-γ production and activation of the PI3K-Akt signaling pathway were involved in the neural differentiation. In conclusion, our finding demonstrated that non-pathogenic M. smegmatis was able to promote neuronal differentiation by its extracellular proteins, which might provide a novel therapeutic strategy for the treatment of neurodegenerative disorders

    Observation of many-body Fock space dynamics in two dimensions

    Full text link
    Quantum many-body simulation provides a straightforward way to understand fundamental physics and connect with quantum information applications. However, suffering from exponentially growing Hilbert space size, characterization in terms of few-body probes in real space is often insufficient to tackle challenging problems such as quantum critical behavior and many-body localization (MBL) in higher dimensions. Here, we experimentally employ a new paradigm on a superconducting quantum processor, exploring such elusive questions from a Fock space view: mapping the many-body system onto an unconventional Anderson model on a complex Fock space network of many-body states. By observing the wave packet propagating in Fock space and the emergence of a statistical ergodic ensemble, we reveal a fresh picture for characterizing representative many-body dynamics: thermalization, localization, and scarring. In addition, we observe a quantum critical regime of anomalously enhanced wave packet width and deduce a critical point from the maximum wave packet fluctuations, which lend support for the two-dimensional MBL transition in finite-sized systems. Our work unveils a new perspective of exploring many-body physics in Fock space, demonstrating its practical applications on contentious MBL aspects such as criticality and dimensionality. Moreover, the entire protocol is universal and scalable, paving the way to finally solve a broader range of controversial many-body problems on future larger quantum devices.Comment: 8 pages, 4 figures + supplementary informatio

    Strengthening of compound casting Al/Mg bimetallic interface with Ni interlayer by vibration assisted treatment

    No full text
    To improve the microstructure of compound casting Al/Mg bimetallic interface and optimize the bonding performance, the vibration assisted treatment and the Ni interlayer coating treatment were combined. After the composite treatment, the thickness of the Al/Mg bimetallic interface decreased significantly, only 8.13% of the original interface thickness. The original large amount of brittle and hard Al–Mg intermetallic compounds (IMCs) no longer existed, and were replaced by the (Mg–Ni) layer dominated by Mg3Ni2Al, the Al3Ni layer and the Ni solid solution layer. The shear crushing effect and the convective stirring effect of the vibration assisted treatment provided more stable and good metallurgical bonding for the Al/Mg bimetallic interface after introducing Ni interlayer. On this basis, combined with the second phase strengthening effect of the newly precipitating Mg3Ni2Al, the bonding strength of the Al/Mg bimetallic interface significantly improved, from 35.47 MPa to 56.12 MPa, with an increase of 58.22%

    MoO3-Doped MnCo2O4 Microspheres Consisting of Nanosheets: An Inexpensive Nanostructured Catalyst to Hydrolyze Ammonia Borane for Hydrogen Generation

    No full text
    Production of hydrogen by catalytically hydrolyzing ammonia borane (AB) has attracted extensive attention in the field of catalysis and energy. However, it is still a challenge to develop a both inexpensive and active catalyst for AB hydrolysis. In this work, we designed a series of MoO3-doped MnCo2O4 (x) catalysts, which were fabricated by a hydrothermal process. The morphology, crystalline structure, and chemical components of the catalysts were systematically analyzed. The catalytic behavior of the catalyst in AB hydrolysis was investigated. Among these catalysts, MoO3-doped MnCo2O4 (0.10) microspheres composed of nanosheets exhibited the highest catalytic activity. The apparent activation energy is 34.24 kJ mol−1 and the corresponding turnover frequency is 26.4 molhydrogen min−1 molcat−1. Taking into consideration the low cost and high performance, the MoO3-doped MnCo2O4 (0.10) microspheres composed of nanosheets represent a promising catalyst to hydrolyze AB for hydrogen production

    Integrating Pharmacology and Microbial Network Analysis with Experimental Validation to Reveal the Mechanism of Composite Sophora Colon-Soluble Capsule against Ulcerative Colitis

    No full text
    Ulcerative colitis (UC) has multifactorial pathogenesis that acts synergistically, such as immune system dysregulation and expansion of infectious gut microbiota. Therefore, a multicomponent treatment derived from Chinese herbal medicine that interacts with multiple targets synergistically is needed. Composite sophora colon-soluble capsule (CSCC) is a Chinese herbal formula that has shown therapeutic efficacy against UC in randomized clinical trials. However, its bioactive components and potential target genes against UC remain unclear. Here, we used a network pharmacology approach to detect component-target-pathway interactions of CSCC against UC. A total of 29 gene targets, 91 bioactive components, and 20 enriched pathways of CSCC were identified. The IL-17 signaling pathway activated by infectious gastrointestinal microbes and predicted by the network analysis to be a major pathway modulated by CSCC against UC was studied in a dextran sulfate sodium-induced colitis model. CSCC showed remarkable efficacy against UC with respect to the attenuation of colon length, body weight loss, and disease activity index through gut microbiota recovery and intestinal immune homeostasis. The rectal administration of CSCC reduced the numbers of Th17 cells isolated from both mesenteric lymph nodes and lamina propria mononuclear cells and the levels of IL-17A, IL-6, IL-1β, and TNF-α. Additionally, the percentage of Treg cells and the levels of their hallmark cytokines were upregulated. Rectal administration of CSCC led to microbiota regulation with a significant correlation between suppression of Verrucomicrobiaceae and Ruminococcaceae, as well as the elevation of Lactobacillaceae, and CSCC administration via microbiome correlation heatmaps and cooccurrence network analysis at multiple time points. Thus, our study presents an effective herbal formula, CSCC, for UC treatment and explores its components and mechanisms of efficacy through the examination of gut microbiota and hallmark cytokines in the IL-17 pathway

    A New Dichoptic Training Strategy Leads to Better Cooperation Between the Two Eyes in Amblyopia

    No full text
    Recent clinical trials failed to endorse dichoptic training for amblyopia treatment. Here, we proposed an alternative training strategy that focused on reducing signal threshold contrast in the amblyopic eye under a constant and high noise contrast in the fellow eye (HNC), and compared it to a typical dichoptic strategy that aimed at increasing the tolerable noise contrast in the fellow eye (i.e., TNC strategy). We recruited 16 patients with amblyopia and divided them into two groups. Eight patients in Group 1 received the HNC training, while the other eight patients in Group 2 performed the TNC training first (Phase 1) and then crossed over to the HNC training (Phase 2). We measured contrast sensitivity functions (CSFs) separately in the amblyopic and fellow eyes when the untested eye viewed mean luminance (monocularly unmasked) or noise stimuli (dichoptically masked) before and after training at a particular frequency. The area under the log contrast sensitivity function (AULCSF) of masked and unmasked conditions, and dichoptic gain (the ratio of AULCSF of masked to unmasked condition) were calculated for each eye. We found that both dichoptic training paradigms substantially improved masked CSF, dichoptic gain, and visual acuity in the amblyopic eye. As opposed to the TNC paradigm, the HNC training produced stronger effects on masked CSFs, stereoacuity, dichoptic gain, and visual acuity in the amblyopic eye. Interestingly, the second-phase HNC training in Group 2 also induced further improvement in the masked contrast sensitivity and AULCSF in the amblyopic eye. We concluded that the HNC training strategy was more effective than the TNC training paradigm. Future design for dichoptic training should not only focus on increasing the tolerable noise contrast in the fellow eye but should also "nurture" the amblyopic eye under normal binocular viewing conditions and sustained interocular suppression
    corecore