152 research outputs found

    Nonlinear dynamical systems of trajectory design for 3D horizontal well and their optimal controls

    Get PDF
    AbstractThe trajectory design of horizontal well is a optimal control problem of nonlinear multistage dynamical system. It is often sought using trial-and-error methods, but these methods depend on experience of designers and workers. In this paper, we create new optimal control model of nonlinear dynamical system for the trajectory design of horizontal well. Several properties are discussed. Uniform design method is used to choose the initial points in the feasible region. We demonstrate how to decompose the feasible region into finite subregions in which improved Hook–Jeeves algorithm is employed to search optimal solution. Finally, the feasible optimization algorithm is constructed to find the optimal solution of the system. Several results show the validity of our algorithm. This is preferable, since our method is independent of the experience

    Implementation of Support Programs for Life Long Educational Inclusion of Students with Special Needs

    Get PDF
    With the implementation of inclusive education, students with special needs, such as learning disabilities, emotional & behavioral disorders, speech & language disabilities, autism, and gifted children, are in need of professional support. In the future, inclusive education will focus on compulsory education and continuously extend to early intervention and eldly service until lifelong education. Based on the overall education goals of the 2030 Agenda for Sustainable Development issued by the United Nations Development Summit, Shanghai Changning District has carried out a practical exploration from mainstreaming to lifelong inclusive education, with the concept of “universal, inclusive and lifelong”, has developed and implemented support programs, providing “group”, “categories” and “individual” support for school-age, preschool and post-school-age students with special needs, developed and implemented 37 transition service programs including five stages: from home to kinder garden, from kindergarten to primary school, from primary school to junior middle school, from junior middle school to special vocational school; after special vocational school

    Estimation and Comparison of Thermoelectric and PV Solar Water Usage in the Colorado River Basin States

    Full text link
    With the continual expansion of populations in the arid Southwest, energy demands will continue to rise. On the other hand, depleting water levels in reservoirs of the Colorado River Basin is expected to continue as more intense and frequent drought events persist in addition to the rapid development in the region. Currently, the three largest water-use categories in the United States are thermoelectric energy, irrigation, and municipal water, which cumulatively account for 90 percent of the national water use. In the Southwest, most of the total electricity generated is still through thermoelectric means. That is, massive amounts of water are used to boil into steam to move the turbine to generate electricity. With such high dependency on water, higher energy demand in the future will lead to further rise in water demand. Therefore, more energy-specific water usage research is needed to determine the success of water resource management for future sustainability. The objective of this study seeks to estimate and compare the water usage in thermoelectricity generation (i.e. natural gas, coal), and solar energy, in five southwest Colorado River Basin states. The term “water use” includes both water withdrawal and consumption from a water body. While solar energy in general includes both thermal solar (Concentrated Solar Power; CSP) and non-thermal solar (Photovoltaic; PV), CSP is also considered a type of thermoelectricity since it utilizes water intensive steam turbines. Thus CSP was not emphasized as the main focus of this study for the comparison of renewable energy alternative to fossil fuels. Results from the first stage of the study, which was based just on the state of Nevada, showed that with PV solar generating 2.84% electricity of the state total in 2014, Nevada saved approximately 56 million gallons of water. To further investigate other southwest areas and their potentials in solar energy, this study expanded the scope from the first stage study to examine four additional Colorado Basin states that have experienced the most droughts in recent years: Utah, New Mexico, Arizona, and California. This study was conducted in two main parts: 1) estimation of the amount of water consumption and withdrawal for utility scale thermoelectricity generation and PV Solar energy for the past ten years, and 2) projection and comparison of future water demand in the basin states, based on each state’s renewable energy portfolio standards (RPS). To accomplish the research objectives, estimations of operational and pre-operational water usage was determined as a function of the thermal fuel sources, cooling systems, and generator types used by power plants combined with established water coefficients per unit of electricity generated. Operational water use refers to the water withdrawal and consumption throughout the process of generating electricity. Preoperational water use refers to the water used to acquire and prepare the fuel sources. The same calculation was applied to calculate the water use for PV solar electricity generation. This study utilizes the system dynamics (SD) model developed from the first stage study to evaluate the interrelationship of thermoelectricity responses from PV Solar energy on water use and their potential for water savings. A model that runs different simulations based on each state’s optimal Renewable Portfolio Standards (RPS). Three case scenarios were simulated to examine the projected energy outlooks by 2032. The first scenario examined projections with the present state of conditions on electricity generation by fuel distributions. The second scenario explored the projections based on the optimized expectation of each state’s current RPS while the third scenario explored the projections on a modified hypothetical RPS expectation. A sub-scenario was created as a reference case to examine how much water were saved from the current trend of electricity production by renewable sources. Results from the past water usage estimation show that although electricity demand has been a slow and steady decline for the past decade, energy demand for the future will continue to increase, but at a less intense rate than population growth. Although each state had set RPS goals to advocate for more future electricity production from renewable energy, and corresponding actions have been taken to build more renewable energy based power plants, statistics showed that they are currently still, and will be in the near future, highly dependent on burning fossil fuels. For example, while California holds the lowest percentage of coal-fueled electricity production (0.4%), it shows an increasingly higher dependency on natural gas over the past decade (from 49% in 2005 to 61% in 2014). Results from the model simulation indicate that with each state’s current RPS goals, approximately 600 million to 1.3 billion gallons of water can be saved annually. Three out of five study states showed significant water savings with projections on a modified hypothetical RPS that will increase the PV solar energy production amounts while decreasing coal. Improvement on RPS goals would be beneficial for Arizona, Nevada, and Utah, while continual compliance to the current RPS goals would be sufficient for California and New Mexico. This study is reproducible so that it can be replicated using other renewable energy sources to test the potential for water efficient energy fuel replacement. Findings from this study will shed light on water resource management involving the utility scale energy sector. Millions of gallons of water are used every day to produce energy. It is important to better explore energy alternatives in the hope of preventing further water shortage in the Southwest. Policy makers may reconsider whether to develop a more aggressive approach that depends on water conservation from the general public or to redesign current water conservation strategies that target the electric sector

    HEIGHTENING URBAN WATER SUPPLY CAPACITY AND RELIABILITY THROUGH RECONSTRUCTING INTEGRATED REGIONAL WATER RESOURCES SYSTEMS

    Get PDF
    ABSTRACT This paper presents essential concept of reconstruction of integrated regional water resources systems (IRWRS), basic status of urban water supply in China, and a case study of solving urban water issues induced by unitary water source through reconstructing IRWRS. Integrated regional water resources systems are defined as water resources systems that consist of water source subsystems, water project subsystems, water utilization subsystems, water management subsystems and the environment of the systems. Lack of enough water sources with sufficient quantity and proper quality is recognized to be one of the most crucial stresses to urban water security. Integrated regional water resources systems with multiple water sources are regarded as an important solution to unitary water source induced urban water scarcity and pertinent issues. The results from the Xi'an Water Resources System show that urban water supply capacity and reliability is capable of being significantly improved through reconstructing IRWRS. KEYWORDS Integrated regional water resources system (IRWRS); multiple water sources; water scarcity; water supply capacity and reliability; unitary water source, urbanization

    A prediction-based forward-looking vehicle dispatching strategy for dynamic ride-pooling

    Full text link
    For on-demand dynamic ride-pooling services, e.g., Uber Pool and Didi Pinche, a well-designed vehicle dispatching strategy is crucial for platform profitability and passenger experience. Most existing dispatching strategies overlook incoming pairing opportunities, therefore suffer from short-sighted limitations. In this paper, we propose a forward-looking vehicle dispatching strategy, which first predicts the expected distance saving that could be brought about by future orders and then solves a bipartite matching problem based on the prediction to match passengers with partially occupied or vacant vehicles or keep passengers waiting for next rounds of matching. To demonstrate the performance of the proposed strategy, a number of simulation experiments and comparisons are conducted based on the real-world road network and historical trip data from Haikou, China. Results show that the proposed strategy outperform the baseline strategies by generating approximately 31\% more distance saving and 18\% less average passenger detour distance. It indicates the significant benefits of considering future pairing opportunities in dispatching, and highlights the effectiveness of our innovative forward-looking vehicle dispatching strategy in improving system efficiency and user experience for dynamic ride-pooling services

    Reliability model of organization management chain of South-to-North Water Diversion Project during construction period

    Get PDF
    AbstractIn order to analyze the indispensability of the organization management chain of the South-to-North Water Diversion Project (SNWDP), two basic forms (series connection state and mixed state of both series connection and parallel connection) of the organization management chain can be abstracted. The indispensability of each form has been studied and is described in this paper. Through analysis of the reliability of the two basic forms, reliability models of the organization management chain in the series connection state and the mixed state of both series connection and parallel connection have been set up

    High-Order Stochastic Adaptive Controller Design with Application to Mechanical System

    Get PDF
    The main purpose of this paper is to apply stochastic adaptive controller design to mechanical system. Firstly, by a series of coordinate transformations, the mechanical system can be transformed to a class of special high-order stochastic nonlinear system, based on which, a more general mathematical model is considered, and the smooth state-feedback controller is designed. At last, the simulation for the mechanical system is given to show the effectiveness of the design scheme

    Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems

    Get PDF
    Abstract This paper investigates simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian (PCH) systems and proposes a number of results on the design of simultaneous stabilization controllers for the PCH systems. Firstly, the case of two PCH systems is studied. Using the dissipative Hamiltonian structural properties, the two systems are combined to generate an augmented PCH system, with which some results on the control design are then obtained. For the case that there exist parametric uncertainties in the two systems' Hamiltonian structures, an adaptive simultaneous stabilization controller is proposed. When there are external disturbances and parametric uncertainties in the two systems, two simultaneous stabilization controllers are designed for the systems: one is a robust controller and the other is a robust adaptive one. Secondly, the case of more than two PCH systems is investigated, and a new result is proposed for the simultaneous stabilization of the systems. Finally, two illustrative examples are studied by using the results proposed in this paper. Simulations show that the simultaneous stabilization controllers obtained in this paper work very well.

    Role of glucose in the repair of cell membrane damage during squeeze distortion of erythrocytes in microfluidic capillaries

    Get PDF
    The rapid development of portable precision detection methods and the crisis of insufficient blood supply worldwide has led scientists to study mechanical visualization features beyond the biochemical properties of erythrocytes. Combined evaluation of currently known biochemical biomarkers and mechanical morphological biomarkers will become the mainstream of single-cell detection in the future. To explore the mechanical morphology of erythrocytes, a microfluidic capillary system was constructedin vitro, with flow velocity and glucose concentration as the main variables, and the morphology and ability of erythrocytes to recover from deformation as the main objects of analysis. We showed the mechanical distortion of erythrocytes under various experimental conditions. Our results showed that glucose plays important roles in improving the ability of erythrocytes to recover from deformation and in repairing the damage caused to the cell membrane during the repeated squeeze process. These protective effects were also confirmed inin vivoexperiments. Our results provide visual detection markers for single-cell chips and may be useful for future studies in cell aging
    • …
    corecore