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Abstract

The trajectory design of horizontal well is a optimal control problem of nonlinear multistage dynamical system. It is often sought
using trial-and-error methods, but these methods depend on experience of designers and workers. In this paper, we create new
optimal control model of nonlinear dynamical system for the trajectory design of horizontal well. Several properties are discussed.
Uniform design method is used to choose the initial points in the feasible region. We demonstrate how to decompose the feasible
region into finite subregions in which improved Hook–Jeeves algorithm is employed to search optimal solution. Finally, the feasible
optimization algorithm is constructed to find the optimal solution of the system. Several results show the validity of our algorithm.
This is preferable, since our method is independent of the experience.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear multistage dynamical system is a problem of multistage decision process, belonging to dynamic pro-
gramming problem. Currently, only inverse order method and order method are applied to solve this problem [6].
Designing the trajectory of horizontal well is a optimal control problem of nonlinear multistage dynamical system. In
current works, the methods of designing the trajectory of horizontal well are often sought using trial-and-error methods
such as cylindrical spiral method, slant-plane method and spiral-like method [2,9,5,7], etc. These methods depend on
experience of designers and workers. So the results designed cannot be ensured optimization. In general, these methods
belong to heuristic methods of man–computer interaction. As the number of segments of horizontal well increases, it
is more difficult to design the trajectory of horizontal well [4].

In this paper, piecewise smoothing dynamic system and optimal control model are not only nonlinear about control
variables and state variables but also combinatorial optimization and topological optimization. So the trajectory design
of horizontal well has been classified as an NP-complete problem [8]. To address this problem, we apply uniform
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design method to choose initial points. Then we decompose the feasible region into several subregions such that every
subregion includes a local minimizer at most. Modified Hooke–Jeeves method is applied to search optimum solution
on every subregion. Our improved Hooke–Jeeves method has advantage of applying on local convex optimal problem
with constraints. This might be preferable, since our method does not take into account the experience of designers and
workers.

In the following sections, in Section 2, we present the nonlinear multistage dynamical system and prove several
properties of system for the trajectory design of horizontal well. Section 3 is devoted to show the optimal control model
of nonlinear multistage dynamic system and to give several properties of model. In Section 4, we describe uniform
design algorithm and improved Hooke–Jeeves method for the trajectory design of 3D horizontal well, and demonstrate
how to decompose the feasible region. Finally, the experimental results of ci-16 slant-plant 146� horizontal well are
shown in Section 5.

2. Nonlinear multistage dynamical system

Suppose that the trajectory of horizontal well consists of n pieces of smoothing curves {d1, d2, . . . , dn}. For the
ith curve, well oblique angle is denoted by xi1 ∈ (0, �/2], and azimuthal angle is xi2. State variables is written as
xi = (xi1, xi2)

� ∈ R2. z0 = (z01, z02, z03) ∈ R3 acts as initial coordinate of horizontal well. zt = (zt1, zt2, zt3) ∈ R3

which is fixed presents the coordinate of objective point. xt1 and xt2 are well oblique angle and azimuthal angle,
respectively, of objective point. We regard terminal coordinates of the ith curve as zi = (zi1, zi2, zi3) ∈ R3. According
to the design rule of the trajectory of horizontal well, state equation of the ith curve can be given as follows:⎧⎪⎨

⎪⎩
dxi1

ds
= ui1 cos(ui2),

dxi2

ds
= ui1 sin(ui2)/ sin(xi1),

s ∈ (ui−1,3, ui3), (1)

{
xij (ui−1,3) = xi−1,j ui−1,3,

xij (0) = x0j ,
i ∈ {2, 3, . . . , n}, j ∈ I2, (2)

where unit of length is meter, unit of angle is radian. Variable s is arc length of the trajectory of horizontal well.
Control variables ui1, ui2 and ui3 act as curvature, implement face angle and arc length to terminal point of trajectory,
respectively. uik ∈ [aik, bik], where aik and bik are known, i ∈ In, k ∈ {1, 2, 3}. x01 and x02 are well oblique angle
and azimuthal angle of initial point of trajectory, respectively. It is easy to find that the solution of system (1) and (2)
is existential and unique for fixed uik ∈ [aik, bik], because of continuity of right formula of (1). The solution of above
system is denoted by xi(s, ui) = (xi1(s, ui), xi2(s, ui)), (i ∈ In) in which ui = (ui1, ui2, ui3)

� ∈ R3.
For nonlinear multistage dynamic system (1) and (2), we should make the following explanations:

(1) Terminal coordinate zi = (zi1, zi2, zi3) ∈ R3 of the ith curve can be represented by ui ∈ R3 and xi ∈ R2 [5].
(2) For overall system, control variables can be represented by u=(u1, u2, . . . , un) ∈ R3n in which ui =(ui1, ui2, ui3).

State variable is x(s, u) = (x1(s, u1), x2 (s, u2), . . . , xn(s, un)) ∈ R2n. xn(s, un) acts as terminal state variable of
overall system. zn = (zn1, zn2, zn3) ∈ R3 is terminal coordinate of overall system.

(3) The feasible region can be written as Uad ={u= (u1, u2, . . . , un) ∈ R3n | ui = (ui1, ui2, ui3), uik ∈ [aik, bik], k ∈
I3, i ∈ In}. di = [ui−1,3, ui3) (i ∈ In) is arc length of the ith curve. We refer to d0 = [0, un3] = ⋃n

i=1 di as arc
length of overall horizontal well and to the set of all solutions satisfying system (1) and (2) as Vx(d0, Uad).

To translate system (1) and (2) into normal control system, we define functions yij (s, uj ) and y(s, u) as follows:

yij (s, ui) =
{

xij (s, ui), s ∈ di,

0, s ∈ d0\di,
i ∈ In, j ∈ I2, (3)

y(s, u) =
n∑

i=1

(yi1(s, ui), yi2(s, ui)), s ∈ d0. (4)
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We find y(s, u) ∈ C(d0, R
2) about s by (3) and (4). In terms of system (1), we present the following function:

fij (s, ui) =
{

ui1 cos(ui2), s ∈ di, j = 1,

ui1 sin(ui2)/ sin(yi1), s ∈ di, j = 2,

0, s ∈ d0\di, j = 1, 2,

(5)

f (y(s), u(s), s) =
n∑

i=1

(fi1(s, ui), fi2(s, ui)), s ∈ d0. (6)

Via functions y(s, u) and f (y(s), u(s), s), system (1) and (2) can be written as the following normal form:{
ẏ(s, u) = f (y(s), u(s), s),

y(0, u) = (x01, x02),
s ∈ d0. (7)

Similarly the set of all solutions satisfying (7) is denoted by Vy(d0, Uad).

Property 1. ∀u ∈ Uad , the solution x(s, u) = (x1(s, u1), x2(s, u2), . . . , xn(s, un)) of system (1) and (2) is existential
and unique, and mapping xi(s, ui): di × [ai1, bi1] × [ai2, bi2] × [ai3, bi3] → R2 (i ∈ In) is continuous. Similarly
y : d0 × Uad → R2 is also continuous.

Property 2. Vy(Uad) is compact set on C(d0, R
3) which is continuous function space.

Proof. The mapping u ∈ Uad → x(s, u) ∈ Vx is continuous according to Property 1. By system (1), Eqs. (3) and (4),
we find that the mapping u ∈ Uad → y(s, u) ∈ Vy is also continuous. Here Uad is bounded closed set. Then Vy is
compact set on C(d0, R

3). �

3. Optimal control model of nonlinear multistage dynamic system

There are two purposes for designing the trajectory of horizontal well, (a) terminal coordinate zn = (zn1, zn2, zn2) ∈
R3 and terminal state variable xn(s, un) of system (1) and (2) are sufficiently close with objective coordinate zt =
(zt1, zt2, zt3) ∈ R3 and objective state variable xt = (xt1, xt2), respectively. (b) the total length of the trajectory of
horizontal well

∑n
i=1 (ui3 −ui−1,3)=un3 is the shortest, that is, the cost is minimum. To implement above two purpose,

firstly, we define positive deviations and negative deviations of of system (7) (or system (1) and (2)).

d+
1k = d+

1k(znk, ztk) =
{

ztk − znk, ztk > znk,

0 otherwise,
k ∈ I3, (8)

d−
1k = d−

1k(znk, ztk) =
{

znk − ztk, znk > ztk,

0 otherwise,
k ∈ I3, (9)

d+
2j = d+

2j (xnj (un3), xtj ) =
{

xtj − xnj (un3), xtj > xnj (un3),

0 otherwise,
j ∈ I2, (10)

d−
2j = d−

2j (xnj (un3), xtj ) =
{

xnj (un3) − xtj , xnj (un3) > xtj ,

0 otherwise,
j ∈ I2. (11)

The objective function is given via these deviations

J (y(s, u)) = c0un3 +
3∑

k=1

c1k(d
+
1k + d−

1k) +
2∑

j=1

c2j (d
+
2j + d−

2j ), (12)

where c0, c11, c12, c13 c21 and c22 are weighted coefficients.
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To optimize the trajectory of horizontal well, we establish the optimal control model of system (7)

CP: min J (y(s, u))

s.t. y(s, u) ∈ Vy(d0, Uad).
(13)

Property 3. J (y(s, y)) is continuous functional on Vy(d0, Uad).

Above property is obviously according to the definition of positive and negative deviation (8)–(11).

Property 4. For ∀ y ∈ Vy(d0, Uad), exists the optimum solution y∗ ∈ Vy(d0, Uad) such that J (y∗(s, u))�J (y(s, u)).

Proof. From Property 2, we know that Vy(d0, Uad) is compact set on C(d0, R
3), and J (y(s, u)) is continuous functional

on Vy(d0, Uad) by Property 3. Then according to the existence theorem of continuous function, we can find y∗ ∈
Vy(d0, Uad) such that J (y∗(s, u))�J (y(s, u)). �

4. An optimization algorithm

Since system (1) (or (7)) are nonlinear and multistage, and function J (y(s, u)) is not convex, optimal control problem
CP is not only NP-complete but also topological optimization. Hence usual algorithms cannot solve it. However, a large
number of experimental results indicate that J (y(s, u)) is multimodal, and both the solution of system (1) and (2) xi

and terminal coordinate zi are continuous on state variable u. So we decompose the problem into several subproblems
to find optimal solution.

4.1. Uniform design algorithm

To achieve the global optimum solution, at first, we apply uniform design algorithm to find m initial points
{u1, u2, . . . , um}, uj ∈ R3. Yuan and Kaitai [1] presented the uniform design algorithm which distributes the points
on feasible region uniformly and searches feasible region effectively to explore information and to find maximum
statistical probability points on s-dimensional space. In this paper, let s = 3n, on the trajectory design of horizontal
well, the uniform design algorithm can be simply described as follows:

Step 1: Generate the point set A={a ∈ Z+ | a < m, at+1 = 1 mod (m), t ∈ Z+, t �s − 1}= {a1, a2, . . . , al} ⊂ Z+.
Step 2: For ∀ak ∈ A (k ∈ Il), define new vector hk = (a0

k , a1
k , . . . , a

s−1
k ) mod (m), labelled as (hk1, hk2, . . . , hks) ∈

Zs . Element generated by uniform design is xk
j =(vk

1j , v
k
2j , . . . , v

k
sj ) ∈ Zs , j ∈ Im, k ∈ Il in which vk

ij =(jhki) mod (m),

i ∈ Is . Let P k = {xk
1 , xk

2 , . . . , xk
m} ⊂ Zs , k ∈ Il .

Step 3: Compute the deviation of P k according to the rule

D(P k) = max
j∈Im

{
N(P k, [0, xk

j ))

m
− V0 | [0, xk

j )

}
,

where [0, xk
j ) = [0, vk

1j ) × [0, vk
2j ) × · · · × [0, xk

sj ), and V0 | [0, xk
j ) act as the volume of [0, xk

j ). N(P k, [0, xk
j ))

represents the number of points which are in P k
⋂[0, xk

j ), k ∈ Il .
Step 4: Search the minimum P ∗ = {x∗

1 , x∗
2 , . . . , x∗

m} ⊂ Rs×m in which x∗
j = (v∗

ij , v
∗
2j , . . . , v

∗
sj ) ∈ Zs , j ∈ Im, such

that D(P ∗) = mink∈Il
D(P k).

Step 5: Obtain the initial points in Uad by the following equality:

u
j
ik = aik + v3(i−1)+k,j

m
(bik − aik), k ∈ I3, i ∈ In, j ∈ Im (14)

that is, uj = (u
j
11, u

j
12, u

j
13, u

j
21, . . . , u

j
n1, u

j
n2, u

j
n3) ∈ Uad ⊂ R3n, j ∈ Im.

4.2. Domain decomposition

Set Pm ={u1, u2, . . . , um} ⊂ Uad ⊂ R3n which is obtained by above algorithm. Let Vik = bik − aik , i ∈ Im, k ∈ I3.



Y. Guo, E. Feng / Journal of Computational and Applied Mathematics 212 (2008) 179–186 183

Property 5. If let � = c/( 6n
√

m − 1), in which c =
√∑n

i=1
∑2

k=1V
2
ik , then Uad ⊂ ⋃m

j=1Bj where Bj = B(uj , �), and
exists convex bounded close set Dj = Bj ∩ Uad , j ∈ Im, such that Uad = ∪m

j=1Dj .

Proof. For ∀x = (x11, x12, x13, . . . , xn1, xn2, xn3) ∈ Uad , ∃wik ∈ [0, m], such that

xik = aik + wikVik/m, i ∈ In, k ∈ I3. (15)

We decompose [aik, bik] into � segments and set �=[ 6n
√

m] which is maximum integer and less than 6n
√

m. Let �= �3n,
it is obviously that � < [√m] < m. Then Uad can be decomposed into � subregions, denoted by Uad =⋃�

j=1Ej , where

Ej = {y = (y11, y12, y13, . . . , yn3) ∈ Uad | yik ∈ [cj
ik, d

j
ik], i ∈ In, k ∈ I3} in which

d
j
ik − c

j
ik = Vik

�
(16)

and aik �c
j
ik �d

j
ik �bik . Based on uniformly distributed character of selected points, for ∀j ∈ I�, we show that there

is a uniformly distributed point at less in Ej . If not so, j ∈ I� exists such that the number of uniformly distributed
points in Ej is 0. But m > �. So ∃k ∈ I� and k �= j , such that the number of uniformly distributed points which are in
Ek is maximum (or probability is maximum), that is, the uniformly distributed points are dense. This violates the rule
of uniform design algorithm. It is also contradictory with D(Pm) = minj∈I�D(P j ).

Suppose that x ∈ Ej ⊂ Uad j ∈ I�, it is inevitable that ∃uj ∈ Ej

⋂
Pm such that ‖x − uj‖ = min{‖x − ut‖ |

ut ∈ Ej

⋂
Pm}. Because of (14)–(16), we know that c

j
ik �aik + (wik/m)Vik �d

j
ik which may be written in other form

(c
j
ik − aik/Vik)m�wik �(d

j
ik − aik/Vik)m. Similarly, there is

v3(i−1)+k,j ∈
[

c
j
ik − aik

Vik

m,
d

j
ik − aik

Vik

m

] ⋂
Z+.

So we find

‖wik − v3(i−1)+k,j‖ <
m

Vik

(d
j
ik − aik − c

j
ik + aik) = m

Vik

(d
j
ik − c

j
ik) = m

�
.

From (14) and (15), we find

‖x − uj‖2 =
n∑

i=1

3∑
k=1

V 2
ik

m2 (wik − v3(i−1)+k,j )
2 �c2�−2.

Above equation becomes ‖x − uj‖�c�−1 < � by using evolution. Because of arbitrary property of x ∈ Bj , Uad ⊂⋃m
j=1Bj , that is inevitable where Bj = B(uj , �). We set Dj = Bj

⋂
Uad , both Uad and Bj are convex bounded close

set, so Dj is also convex bounded close set and Uad = ⋃m
j=1Dj . �

To solve the problem CP, we decompose Uad ⊂ R3n into m subregions {D1, D2, . . . , Dm}.As local optimal solution
is not unique, we increase the value of m until a local optimal solution is on Dj at most subject to

uj ∈ int Dj ⊂ Uad =
m⋃

j=1

Dj, j ∈ Im. (17)

The problem CP can be written as m subproblems CPj (j ∈ Im) via above decomposition. Because there is an optimal
solution on Dj for CPj , and Jj (u) is continuous on Dj , Jj (u) is local convex on Dj . As Dj �= ∅, if the feasible region
of CPj is not empty, uj∗ is used to represent the optimal solution of CPj , else, we let J (uj∗)=+∞. At last, the optimal
solution of CP is obtained by J (u∗) = minj∈Im{Jj (u

j∗)}.
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4.3. Modified Hooke–Jeeves algorithm

In 1962, Hooke and Jeeves presented Hooke–Jeeves algorithm which belongs to direct method of multivariable
function and need not compute derivative [3]. It applies for unconstrained problems. At any case, it does not require the
regularity continuity and existence of derivation for objective function. In this paper, to solve constrained minimization
problem CPj on bounded subregion Dj , j ∈ Im, we analyze and adjust the location of iteration points until all
constraint conditions are satisfied. And descent tendency must be kept. Simultaneously, descent velocity and efficiency
are improved via adjusting the accelerated factors. Since Jj (u) is convex on Dj and Hooke–Jeeves algorithm is
convergent for convex function, our modified Hooke–Jeeves method is also convergent for every subproblem CPj

j ∈ Im.
The modified Hooke–Jeeves method can be simply described as follows:
Step 1: Given the initial step lengths {�1, �2, �3} ⊂ R, acceleration factor �, the acceptance deviation � > 0 and

sufficiently large total arc length S; product m initial points uk = {uk
ij , i ∈ In, j ∈ I3} ⊂ Rn×3, k ∈ Im by uniform

design algorithm; let xk = uk , k ∈ Im and the superscript of optimal solution k∗ = 0; compute the upper bounds and
lower bounds of all variables Luk

ij
and Uuk

ij
, i ∈ Im, j ∈ I3, k ∈ Im by above region partition; let k = 1.

Step 2: Compute objective function value e = J (xk) and the corresponding total arc length s.
If e = −1, then let k = k + 1, if k�m, return to step 2, else, go to step 18.
If 0 < e < �, then go to step 16.
If e > �, then let E = e, go to step 3.

Step 3: i = 1, j = 1.
Step 4: Let xk

ij = xk
ij + �j . If xk

ij > Uuk
ij

, then xk
ij = Uuk

ij
.

Step 5: Compute e = J (xk
ij ) and the corresponding total arc length s.

If e = −1, then let k = k + 1, if k�m, return to step 2, else, go to step 18.
If 0 < e < �, then go to step 16.
If � < e < E, then let E = e, go to step 8.
If e > E, then let xk

ij = xk
ij − �j , go to step 6.

Step 6: Let xk
ij = xk

ij − �j . If xk
ij < Luk

ij
, then xk

ij = Luk
ij

.

Step 7: Compute e = J (xk
ij ) and the corresponding total arc length s.

If e = −1, then let k = k + 1, if k�m, return to step 2, else, go to step 18.
If 0 < e < �, then go to step 16.
If � < e < E, then let E = e, go to step 8.
If e > E, then let xk

ij = xk
ij + �j , go to step 8.

Step 8: Let j = j + 1. If j �3, return to step 4, else, go to step 9.
Step 9: Compute the down-ladder operators dj = xk

ij − uk
ij , j = 1, 2, 3.

Step 10: Let xk
ij = xk

ij + �dj , j = 1, 2, 3. If Luk
ij

< xk
ij < Uuk

ij
, go to step 12, else, let xk

ij = xk
ij − �dj , j = 1, 2, 3 and

� = 0.9�, then go to step 11.
Step 11: If � > 0.01, return to step 10, else, go to step 14.
Step 12: Compute e = J (xk

ij ) and the corresponding total arc length s.
If e = −1, then let k = k + 1, if k�m, return to step 2, else, go to step 18.
If 0 < e < �, then go to step 16.
If � < e < E, then let E = e, return to step 10.
If e > E, then let xk

ij = xk
ij − �dj and � = 0.9�, then go to step 13.

Step 13: If � > 0.01, return to step 10, else, go to step 14.
Step 14: Let yk

ij = xk
ij , j = 1, 2, 3 and i = i + 1. If i�n, then let j = 1, return to step 4, else, go to step 15.

Step 15: Let �j = 0.9�j , j = 1, 2, 3. If �2
1 + �2

2 + �2
3 > 0.01, return to step 3, else, go to step 16.
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Step 16: If s < S, then let S = s and k∗ = k.
Step 17: Let k = k + 1, If k�m, return to step 2, else, go to step 18.
Step 18: Output the results k∗ and xk∗ = {xk∗

ij , i ∈ In, j ∈ I3}.

5. Results and discussion

The purpose of this article is to explore the most reasonable optimization model and strategy such that the cost is
minimum for designing the trajectory of horizontal well. Our method and model are applied for several horizontal
wells. Not surprisingly, the results show that the model and strategy are reasonable.

In this paper, we illustrate the software to compute the trajectory of ci-16 slant-plant 146� well. Oblique angle,
azimuthal angle and space coordinates of initial points and objective points are shown in Table 1. Intervals of implement
face angle, curvature and arc length are in Table 2. We select 100 initial points (m= 100) on Uad using uniform design
method, then decompose Uad into 100 subregions Di (i ∈ I100) in which there are 96 nonempty feasible regions. In
our test, let n = 3, Table 3 shows five local optimal schemes selected from overall schemes.

For the trajectory design of horizontal well, our method improves computing precision and increases the optimization
schemes than [8] about 37%. Unsurprisingly our method and model work better for the trajectory.

Table 1
The based data of ci-16 slant-plant-146�

Oblique-angle Azimuthal-angle X Y Z

Well-bottom 10.4 228.18 102.69 −156.39 1673.15
Target-point 89.5 205.5 62.5 −192.9 1718

Table 2
The interval of control variables

Implement face angle Radius of curvature Arc length

First segment [−50,50] [40,60] [10,100]
Second segment [−50,50] [40,60] [10,100]
Third segment [−50,50] [40,60] [10,100]

Table 3
The optimal results of ci-16 slant-plant-146�

Result 1 Result 2 Result 3 Result 4 Result 5

First segment −1.44 −7.46 −1.24 −4.93 3.29
Implement face angle Second segment −12.11 23.83 −9.01 2.51 −15.38

Third segment 8.52 −12.60 7.04 −5.62 23.17

First segment 55.98 54.51 54.07 57.08 59.98
Radius of curvature Second segment 50.58 51.47 55.86 51.22 47.92

Third segment 57.89 53.22 56.21 52.50 56.38

First segment 29.54 28.38 26.41 29.97 10.00
Length of trajectory Second segment 22.80 16.36 38.57 33.60 27.30

Third segment 23.65 31.29 10.83 12.50 38.61

Total length 75.99 76.03 75.81 76.07 75.91

Error 0.37 0.32 0.26 0.29 0.49
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