1,170 research outputs found

    A Systematic Review of Studies Comparing the Measurement Properties of the Three-Level and Five-Level Versions of the EQ-5D

    Get PDF
    Background: Since the introduction of the five-level version of the EQ-5D (5L), many studies have comparatively investigated the measurement properties of the original three-level version (3L) with the 5L version. Objective: The aim of this study was to consolidate the available evidence on the performance of both instruments. Methods: A systematic literature search of studies in the English and German languages was conducted (2007–January 2018) using the PubMed, EMBASE, and PsycINFO (EBSCO) databases, as well as the EuroQol Research Foundation website. Data were extracted and assessed on missing values, distributional properties, informativity indices (Shannon’s H′ and J′), inconsistencies, responsiveness, and test–retest reliability. Results: Twenty-four studies were included in the review. Missing values and floor effects (percentage reporting the worst health state) were found to be negligible for both 3L and 5L (< 5%). From 18 studies, inconsistencies ranged from 0 to 10.6%, although they were generally well below 5%, with 9 studies reporting the most inconsistencies for Usual Activities (mean percentage 4.1%). Shannon’s indices were always higher for 5L than for 3L, and all but three studies reported lower ceiling effects (‘11111’) for 5L than for 3L. There is mixed and insufficient evidence on responsiveness and test–retest reliability, although results on index values showed better performance for 5L on test–retest reliability. Conclusion: Overall, studies showed similar or better measurement properties of the 5L compared with the 3L, and evidence indicated moderately better distributional parameters and substantial improvement in informativity for the 5L compared with the 3L. Insufficient evidence on responsiveness and test–retest reliability implies further research is needed

    Psychometric properties of the EQ-5D-5L: a systematic review of the literature

    Get PDF
    Purpose: Although the EQ-5D has a long history of use in a wide range of populations, the newer five-level version (EQ-5D-5L) has not yet had such extensive experience. This systematic review summarizes the available published scientific evidence on the psychometric properties of the EQ-5D-5L. Methods: Pre-determined key words and exclusion criteria were used to systematically search publications from 2011 to 2019. Information on study characteristics and psychometric properties were extracted: specifically, EQ-5D-5L distribution (including ceiling and floor), missing values, reliability (test–retest), validity (convergent, known-groups, discriminate) and responsiveness (distribution, anchor-based). EQ-5D-5L index value means, ceiling and correlation coefficients (convergent validity) were pooled across the studies using random-effects models. Results: Of the 889 identified publications, 99 were included for review, representing 32 countries. Musculoskeletal/orthopedic problems and cancer (n = 8 each) were most often studied. Most papers found missing values (17 of 17 papers) and floor effects (43 of 48 papers) to be unproblematic. While the index was found to be reliable (9 of 9 papers), individual dimensions exhibited instability over time. Index values and dimensions demonstrated moderate to strong correlations with global health measures, other multi-attribute utility instruments, physical/functional health, pain, activities of daily living, and clinical/biological measures. The instrument was not correlated with life satisfaction and cognition/communication measures. Responsiveness was addressed by 15 studies, finding moderate effect sizes when confined to studied subgroups with improvements in health. Conclusions: The EQ-5D-5L exhibits excellent psychometric properties across a broad range of populations, conditions and settings. Rigorous exploration of its responsiveness is needed

    Search for the decay J/ψγ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×107\times 10^{-7} at the 90\% confidence level

    Observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta'

    Get PDF
    We report the observation and study of the decay J/ψϕηηJ/\psi\rightarrow\phi\eta\eta' using 1.3×1091.3\times{10^9} J/ψJ/\psi events collected with the BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be (2.32±0.06±0.16)×104(2.32\pm0.06\pm0.16)\times{10^{-4}}. We also report evidence for a structure, denoted as XX, in the ϕη\phi\eta' mass spectrum in the 2.02.12.0-2.1 GeV/c2c^2 region. Using two decay modes of the η\eta' meson (γπ+π\gamma\pi^+\pi^- and ηπ+π\eta\pi^+\pi^-), a simultaneous fit to the ϕη\phi\eta' mass spectra is performed. Assuming the quantum numbers of the XX to be JP=1J^P = 1^-, its significance is found to be 4.4σ\sigma, with a mass and width of (2002.1±27.5±21.4)(2002.1 \pm 27.5 \pm 21.4) MeV/c2c^2 and (129±17±9)(129 \pm 17 \pm 9) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.8±1.2±1.7)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.8 \pm 1.2 \pm 1.7)\times10^{-5}. Alternatively, assuming JP=1+J^P = 1^+, the significance is 3.8σ\sigma, with a mass and width of (2062.8±13.1±7.2)(2062.8 \pm 13.1 \pm 7.2) MeV/c2c^2 and (177±36±35)(177 \pm 36 \pm 35) MeV, respectively, and a product branching fraction B(J/ψηX)×B(Xϕη)=(9.6±1.4±2.0)×105\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.6 \pm 1.4 \pm 2.0)\times10^{-5}. The angular distribution of J/ψηXJ/\psi\rightarrow\eta{}X is studied and the two JPJ^P assumptions of the XX cannot be clearly distinguished due to the limited statistics. In all measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table

    Observation of ηcωω\eta_c\to\omega\omega in J/ψγωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψγωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηcωω)=(2.88±0.10±0.46±0.68)×103\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψγηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1)M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1)\Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    Observation of Ds+pnˉD^+_s\rightarrow p\bar{n} and confirmation of its large branching fraction

    Full text link
    The baryonic decay Ds+pnˉD^+_s\rightarrow p\bar{n} is observed, and the corresponding branching fraction is measured to be (1.21±0.10±0.05)×103(1.21\pm0.10\pm0.05)\times10^{-3}, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e+ee^+e^- double-ring collider with a center-of-mass energy of 4.178~GeV and an integrated luminosity of 3.19~fb1^{-1}. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision, which may deepen our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays

    Measurement of proton electromagnetic form factors in e+eppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+eppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+eppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (GE/GM|G_{E}/G_{M}|) and the value of the effective (Geff|G_{\rm{eff}}|), electric (GE|G_E|) and magnetic (GM|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. GE/GM|G_{E}/G_{M}| and GM|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and GE|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics

    First observations of hch_c \to hadrons

    Get PDF
    Based on (4.48±0.03)×108(4.48 \pm 0.03) \times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, five hch_c hadronic decays are searched for via process ψ(3686)π0hc\psi(3686) \to \pi^0 h_c. Three of them, hcppˉπ+πh_c \to p \bar{p} \pi^+ \pi^-, π+ππ0\pi^+ \pi^- \pi^0, and 2(π+π)π02(\pi^+ \pi^-) \pi^0 are observed for the first time, with statistical significances of 7.4σ\sigma, 4.9σ4.9\sigma, and 9.1σ\sigma, and branching fractions of (2.89±0.32±0.55)×103(2.89\pm0.32\pm0.55)\times10^{-3}, (1.60±0.40±0.32)×103(1.60\pm0.40\pm0.32)\times10^{-3}, and (7.44±0.94±1.56)×103(7.44\pm0.94\pm1.56)\times10^{-3}, respectively, where the first uncertainties are statistical and the second systematic. No significant signal is observed for the other two decay modes, and the corresponding upper limits of the branching fractions are determined to be B(hc3(π+π)π0)<8.7×103B(h_c \to 3(\pi^+ \pi^-) \pi^0)<8.7\times10^{-3} and B(hcK+Kπ+π)<5.8×104B(h_c \to K^+ K^- \pi^+ \pi^-)<5.8\times10^{-4} at 90% confidence level.Comment: 17 pages, 16 figure

    Study of J/ψJ/\psi and ψ(3686)Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψΣ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.1784.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+K+η)=(2.68±0.17±0.17±0.08)×103\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+ηπ+)=(37.8±0.4±2.1±1.2)×103\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+K+η)=(1.62±0.10±0.03±0.05)×103\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+ηπ+)=(17.41±0.18±0.27±0.54)×103\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+K+KS0)=(15.02±0.10±0.27±0.47)×103\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+KS0π+)=(1.109±0.034±0.023±0.035)×103\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+K+π0)=(0.748±0.049±0.018±0.023)×103\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+K+Kπ+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values
    corecore