1,803 research outputs found

    Higher-Derivative Gravity with Non-minimally Coupled Maxwell Field

    Full text link
    We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled pp-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically-charged black holes. We also construct exact electrically-charged z=2z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory.Comment: Latex, 23 page

    Non-Abelian (Hyperscaling Violating) Lifshitz Black Holes in General Dimensions

    Get PDF
    We consider Einstein gravities coupled to a cosmological constant and multiple SU(2)SU(2) Yang-Mills fields in general dimensions and find that the theories admit colored Lifshitz solutions with dynamic exponents z>1z>1. We also introduce a Maxwell field and construct exact electric charged black holes that asymptote to the z=D−1z=D-1 colored Lifshitz spacetimes and analyse their thermodynamical first law. Furthermore, we introduce a dilaton to the system and construct Lifshitz spacetimes with hyperscaling violations. After turning on the Maxwell field, we obtain a class of hyperscaling violating Lifshitz black holes when θ=2D−2[z−(D−1)]\theta=\frac{2}{D-2}[z-(D-1)].Comment: Latex, 12 pages, a published version in PL

    Holographic Complexity Growth Rate in Horndeski Theory

    Full text link
    Based on the context of complexity = action (CA) conjecture, we calculate the holographic complexity of AdS black holes with planar and spherical topologies in Horndeski theory. We find that the rate of change of holographic complexity for neutral AdS black holes saturates the Lloyd's bound. For charged black holes, we find that there exists only one horizon and thus the corresponding holographic complexity can't be expressed as the difference of some thermodynamical potential between two horizons as that of Reissner-Nordstrom AdS black hole in Einstein-Maxwell theory. However, the Lloyd's bound is not violated for charged AdS black hole in Horndeski theory.Comment: 20 pages, 6 figures, references added, typos correcte

    Blandford-Znajek Process in Einsteinian Cubic Gravity

    Full text link
    In this paper, we investigate the Blandford-Znajek (BZ) process within the framework of Einsteinian cubic gravity (ECG). To analytically study the BZ process using the split monopole configuration, we construct a slowly rotating black hole in ECG up to cubic order in small spin, considering the leading order in small coupling constant of higher curvature terms. By deriving the magnetosphere solution around the black hole, we determine the BZ power up to the second relative order in spin. The BZ power is modified by the coupling constant compared to Kerr black hole. Although the general nature of the BZ process in ECG remains unchanged at the leading order in spin, the coupling constant introduces modification at the second relative order in spin. Therefore, we anticipate that it is feasible to discern general relativity from higher derivative gravities by examining the BZ power in rapidly rotating black holes.Comment: v2: 13 pages, references adde

    Godel Universe from String Theory

    Full text link
    G\"odel universe is a direct product of a line and a three-dimensional spacetime we call Gα_\alpha. In this paper, we show that the G\"odel metrics can arise as exact solutions in Einstein-Maxwell-Axion, Einstein-Proca-Axion, or Freedman-Schwarz gauged supergravity theories. The last allows us to embed G\"odel universe in string theory. The ten-dimensional spacetime is a direct product of a line and the nine-dimensional one of an S3×S3S^3\times S^3 bundle over Gα_\alpha, and it can be interpreted as some decoupling limit of the rotating D1/D5/D5 intersection. For some appropriate parameter choice, the nine-dimensional metric becomes an AdS3×S3_3\times S^3 bundle over squashed 3-sphere. We also study the properties of the G\"odel black holes that are constructed from the double Wick rotations of the G\"odel metrics.Comment: latex, 20 pages, discussion on null-energy condition included, typos corrected and references adde

    On the Size of Rotating Black Holes

    Full text link
    Recently a sequence of inequalities relating the black hole horizon, photon sphere, shadow were proposed for spherically symmetric and static black holes, providing the upper bound for given mass. In this paper, we extend the discussion to include rotating black holes. When viewed from the north pole direction, the shadow remains a round disk, but the image is skewed when viewed from the equatorial plane. After properly implementing the ``size'' parameters for the rotating black holes, we verify that the sequence of inequalities remain valid for a variety of solutions, including Kerr, Kerr-Newman, Kerr-Sen and Kerr-Cveti\v c-Youm black holes. The upshot is that rotation makes both the actual and apparent sizes of a black hole smaller.Comment: Latex, 33 page

    Horndeski Gravity and the Violation of Reverse Isoperimetric Inequality

    Full text link
    We consider Einstein-Horndeski-Maxwell gravity, together with a cosmological constant and multiple Horndeski axions. We construct charged AdS planar black holes in general dimensions where the Horndeski anxions span over the planar directions. We analyse the thermodynamics and obtain the black hole volumes. We show that the reverse isoperimetric inequality can be violated, implying that these black holes can store information more efficiently than the Schwarzschild black hole.Comment: Latex, 25 pages, 1 figure, references adde

    Black Hole Entropy and Viscosity Bound in Horndeski Gravity

    Get PDF
    Horndeski gravities are theories of gravity coupled to a scalar field, in which the action contains an additional non-minimal quadratic coupling of the scalar, through its first derivative, to the Einstein tensor or the analogous higher-derivative tensors coming from the variation of Gauss-Bonnet or Lovelock terms. In this paper we study the thermodynamics of the static black hole solutions in nn dimensions, in the simplest case of a Horndeski coupling to the Einstein tensor. We apply the Wald formalism to calculate the entropy of the black holes, and show that there is an additional contribution over and above those that come from the standard Wald entropy formula. The extra contribution can be attributed to unusual features in the behaviour of the scalar field. We also show that a conventional regularisation to calculate the Euclidean action leads to an expression for the entropy that disagrees with the Wald results. This seems likely to be due to ambiguities in the subtraction procedure. We also calculate the viscosity in the dual CFT, and show that the viscosity/entropy ratio can violate the η/S≥1/(4π)\eta/S\ge 1/(4\pi) bound for appropriate choices of the parameters.Comment: 30 pages, no figure, minor revision
    • …
    corecore