5,714 research outputs found

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    A new fractional derivative involving the normalized sinc function without singular kernel

    Full text link
    In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems.Comment: Keywords: Fractional derivative, anomalous heat diffusion, integral transform, analytical solutio

    Study of the weak annihilation contributions in charmless BsVVB_s\to VV decays

    Full text link
    In this paper, in order to probe the spectator-scattering and weak annihilation contributions in charmless BsVVB_s\to VV (where VV stands for a light vector meson) decays, we perform the χ2\chi^2-analyses for the end-point parameters within the QCD factorization framework, under the constraints from the measured Bˉs\bar B_{s}\toρ0ϕ\rho^0\phi, ϕK0\phi K^{*0}, ϕϕ\phi \phi and K0Kˉ0K^{*0}\bar K^{*0} decays. The fitted results indicate that the end-point parameters in the factorizable and nonfactorizable annihilation topologies are non-universal, which is also favored by the charmless BPPB\to PP and PVPV (where PP stands for a light pseudo-scalar meson) decays observed in the previous work. Moreover, the abnormal polarization fractions fL,(BˉsK0Kˉ0)=(20.1±7.0)%,(58.4±8.5)%f_{L,\bot}(\bar B_{s}\to K^{*0}\bar K^{*0})=(20.1\pm7.0)\%\,,(58.4\pm8.5)\% measured by the LHCb collaboration can be reconciled through the weak annihilation corrections. However, the branching ratio of BˉsϕK0\bar B_{s}\to\phi K^{*0} decay exhibits a tension between the data and theoretical result, which dominates the contributions to χmin2\chi_{\rm min}^2 in the fits. Using the fitted end-point parameters, we update the theoretical results for the charmless BsVVB_s\to VV decays, which will be further tested by the LHCb and Belle-II experiments in the near future.Comment: 31 pages, 4 figures, 6 table

    Human motion retrieval based on freehand sketch

    Get PDF
    In this paper, we present an integrated framework of human motion retrieval based on freehand sketch. With some simple rules, the user can acquire a desired motion by sketching several key postures. To retrieve efficiently and accurately by sketch, the 3D postures are projected onto several 2D planes. The limb direction feature is proposed to represent the input sketch and the projected-postures. Furthermore, a novel index structure based on k-d tree is constructed to index the motions in the database, which speeds up the retrieval process. With our posture-by-posture retrieval algorithm, a continuous motion can be got directly or generated by using a pre-computed graph structure. What's more, our system provides an intuitive user interface. The experimental results demonstrate the effectiveness of our method. © 2014 John Wiley & Sons, Ltd
    corecore