49,133 research outputs found
Recommended from our members
A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost
Due to reducing the reliance of buildings on fossil fuels, Passive House (PH) is receiving more and more attention. It is important that integrated optimization of passive performance by considering energy demand, cost and thermal comfort. This paper proposed a set three-stage multi-objective optimization method that combines redundancy analysis (RDA), Gradient Boosted Decision Trees (GBDT) and Non-dominated sorting genetic algorithm (NSGA-II) for PH design. The method has strong engineering applicability, by reducing the model complexity and improving efficiency. Among then, the GBDT algorithm was first applied to the passive performance optimization of buildings, which is used to build meta-models of building performance. Compared with the commonly used meta-model, the proposed models demonstrate superior robustness with the standard deviation at 0.048. The optimization results show that the energy-saving rate is about 88.2% and the improvement of thermal comfort is about 37.8% as compared to the base-case building. The economic analysis, the payback period were used to integrate initial investment and operating costs, the minimum payback period and uncomfortable level of Pareto frontier solution are 0.48 years and 13.1%, respectively. This study provides the architects rich and valuable information about the effects of the parameters on the different building performance
Recommended from our members
A novel improved model for building energy consumption prediction based on model integration
Building energy consumption prediction plays an irreplaceable role in energy planning, management, and conservation. Constantly improving the performance of prediction models is the key to ensuring the efficient operation of energy systems. Moreover, accuracy is no longer the only factor in revealing model performance, it is more important to evaluate the model from multiple perspectives, considering the characteristics of engineering applications. Based on the idea of model integration, this paper proposes a novel improved integration model (stacking model) that can be used to forecast building energy consumption. The stacking model combines advantages of various base prediction algorithms and forms them into “meta-features” to ensure that the final model can observe datasets from different spatial and structural angles. Two cases are used to demonstrate practical engineering applications of the stacking model. A comparative analysis is performed to evaluate the prediction performance of the stacking model in contrast with existing well-known prediction models including Random Forest, Gradient Boosted Decision Tree, Extreme Gradient Boosting, Support Vector Machine, and K-Nearest Neighbor. The results indicate that the stacking method achieves better performance than other models, regarding accuracy (improvement of 9.5%–31.6% for Case A and 16.2%–49.4% for Case B), generalization (improvement of 6.7%–29.5% for Case A and 7.1%-34.6% for Case B), and robustness (improvement of 1.5%–34.1% for Case A and 1.8%–19.3% for Case B). The proposed model enriches the diversity of algorithm libraries of empirical models
Recommended from our members
Impact of adjustment strategies on building design process in different climates oriented by multiple performance
Adjustment strategies including window ventilation and shading have important improvements in energy consumption, thermal and light environments, furthermore, the upper limit for improvement is affected by design parameters. However, studies incorporating adjustment strategies in the building design process are very limited. To address this research gap, we explore the effects of window ventilation and shading on building design performance from uncertainty analysis, sensitivity analysis, and multi-objective optimization. Furthermore, China's typical climate zones are compared given climate effects. Results indicate that (1) the uncertainty of total energy demand in the severe cold climate is most affected with the uncertainty increase rate being 32.0%, the uncertainty of thermal comfort ratio in the hot summer and cold winter climate and the hot summer and warm winter climate is most affected with the uncertainty increase rate being 16.3% and 14.0%, respectively. (2) the sensitivity analysis of the thermal comfort ratio is more sensitive to adjustment strategies than to total energy demand. The severe cold climate is more vulnerable than in other climates. (3) when multi-objective optimization is performed with maximum thermal comfort and minimum total energy demand when considering adjustment strategies, the severe cold climate has the greatest energy-saving potential (38.1%) and the hot summer and cold winter climate has the largest potential to improve thermal comfort (17.6%). More importantly, the light environment is within the comfort range from the daylight glare index, the illuminance, and illuminance uniformity ratios
An Improved Differential Evolution Algorithm for Maritime Collision Avoidance Route Planning
High accuracy navigation and surveillance systems are pivotal to ensure efficient ship route planning and marine safety. Based on existing ship navigation and maritime collision prevention rules, an improved approach for collision avoidance route planning using a differential evolution algorithm was developed. Simulation results show that the algorithm is capable of significantly enhancing the optimized route over current methods. It has the potential to be used as a tool to generate optimal vessel routing in the presence of conflicts
Heuristic algorithms for the min-max edge 2-coloring problem
In multi-channel Wireless Mesh Networks (WMN), each node is able to use
multiple non-overlapping frequency channels. Raniwala et al. (MC2R 2004,
INFOCOM 2005) propose and study several such architectures in which a computer
can have multiple network interface cards. These architectures are modeled as a
graph problem named \emph{maximum edge -coloring} and studied in several
papers by Feng et. al (TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016).
Later on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an
alternative variant, named the \emph{min-max edge -coloring}.
The above mentioned graph problems, namely the maximum edge -coloring and
the min-max edge -coloring are studied mainly from the theoretical
perspective. In this paper, we study the min-max edge 2-coloring problem from a
practical perspective. More precisely, we introduce, implement and test four
heuristic approximation algorithms for the min-max edge -coloring problem.
These algorithms are based on a \emph{Breadth First Search} (BFS)-based
heuristic and on \emph{local search} methods like basic \emph{hill climbing},
\emph{simulated annealing} and \emph{tabu search} techniques, respectively.
Although several algorithms for particular graph classes were proposed by
Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques,
hypergraphs), we design the first algorithms for general graphs.
We study and compare the running data for all algorithms on Unit Disk Graphs,
as well as some graphs from the DIMACS vertex coloring benchmark dataset.Comment: This is a post-peer-review, pre-copyedit version of an article
published in International Computing and Combinatorics Conference
(COCOON'18). The final authenticated version is available online at:
http://www.doi.org/10.1007/978-3-319-94776-1_5
Recommended from our members
Fighting coal — Effectiveness of coal-replacement programs for residential heating in China: Empirical findings from a household survey
Household fuel substitution has been a crucial step for controlling air pollution in China, but the performance evaluation of household fuel substitution policies is overlooked. This study capitalized on the opportunity to use data collected during the household coal-replacement program in North China to evaluate the effect of a mandatory policy on fuel substitution at the micro-level. The results indicate that there is a significant effect of the coal-replacement program on fuel substitution, as we expected. The coal-to-electricity policy is effective in achieving the goal of a clean winter but not a warm winter due to the decline of delivered energy, while the high-quality coal replacement policy results in better performance in delivered energy but no improvement in indoor air quality. It is recommended to prioritize supporting measures on both the supply and demand sides before implementation, along with undertaking differential measures during the implementation phase to better address energy inequality
Time-dependent universal conductance fluctuations in mesoscopic Au wires: implications
In cold, mesoscopic conductors, two-level fluctuators lead to time-dependent
universal conductance fluctuations (TDUCF) manifested as noise. In Au
nanowires, we measure the magnetic field dependence of TDUCF, weak localization
(WL), and magnetic field-driven (MF) UCF before and after treatments that alter
magnetic scattering and passivate surface fluctuators. Inconsistencies between
and strongly suggest either that the
theory of these mesoscopic phenomena in weakly disordered, highly pure Au is
incomplete, or that the assumption that the TDUCF frequency dependence remains
to very high frequencies is incorrect. In the latter case, TDUCF in
excess of expectations may have implications for decoherence in
solid-state qubits.Comment: 8 pages, 9 figures, accepted to PR
- …